
AI in an autonomous robotic system vision

A. Kozlowski, R. Mignon1

1Section électronique, Haute école de la province de Liège, 4020 Liège (Belgium)
(Dated: January 25, 2022)

This publication proposes a study of the Nvidia Jetson Nano 2GB development kit to develop
a deep learning algorithm capable of detecting competition robots. Using transfer learning on the
MobileNet algorithm, robots are detected on live camera feed and their coordinates on images can
be retrieved. Finally a study of the Jetson Nano power consumption has been carried out.

INTRODUCTION

Before starting to program an AI to improve our robot,
this publication will start with a theoretical aspect to un-
derstand what deep learning, machine learning and neu-
ral networks are. Then, since we are using the MobileNet
algorithm, an explanation will be developed to under-
stand how this algorithm works and its performance. Af-
terwards, our research will expose the performance of
the Jetson Nano compared to other existing technolo-
gies. Next, a research on the difference between CPU and
GPU has been done in order to determine why GPUs are
mainly used for training deep learning algorithms. Fol-
lowing all this, we will describe the different steps to run
an AI on the Jetson Nano and we will also detail the re-
sults of the consumption of the Jetson Nano in training
and running. To finish, we will conclude by the results
of accuracy to recognize a robot as well as suggested im-
provements.

THEORETICAL ASPECTS

Machine Learning and Neural Networks

Machine learning uses mathematical and statistical
methods to analyze data and allow computers to "learn"
how to make decisions or predictions. There are two
types of machine learning :

• Supervised machine learning : depends a set of data
generated by human that learn to software how to
define data.

• Non supervised machine learning : depends the
model acknowledgement from data and the com-
parison with others data.

These algorithms performances improve gradually as the
datasets and training times increase and other models
appear.

Artificial Neural Networks (ANN) are a specific type
of machine learning process. They are constituted of
"neurons" which receive input signals and produce an
ouput signal depending of a threshold value. Those neu-
rons can receive the same signal or not and as such, the

ouput function is a linear combination of the input de-
pending of the thresholds of each neuron. The algorithm
will be trained with a database and the ouput will be
evaluated using a loss function (which characterises the
performance of the algorithm). By changing the various
thresholds, strengthening and weakening certain connec-
tions, the algorithm will improve over time.

Deep Learning

Deep learning (DL) is a kind of machine learning based
on ANN [1]. It mimics the structure and process of the
human brain as it will decompose the tasks into various
features performed one after an other. It can recognize
representative data from unstructured inputs (in contrast
to Machine learning) and products specific actions or de-
cisions. Like machine learning, deep learning can be su-
pervised or unsupervised. The main difference with a
basic ANN is the number of layers of processing before
the output (see FIG. 1). This allows neural networks
to automatically extract features from raw data without
additional human input. Neural networks separate data
into chunks of data and send them to individual neurons
of each layers for processing. Once each features have
been completed, the network produces the final output
layer and makes a decision.

FIG. 1: Comparison between simple ANN and DL [3]



2

MobileNet Algorithm

This algorithm runs almost like a classical CNN (Con-
volutive Neuronal Network, several filtering and classifi-
cations of pictures). Only the convolution step is differ-
ent. Indeed, for a CNN, the convolution is 3x3 size but,
with MobileNet, the convolution is divided by 2 parts
that we call depthwise convolution and pointwise convo-
lution.

The depthwise convolution is 3x3 size and is used to
apply a single filter to each input channel (a channel of
an image represents a RGB level, so there are 3). Then,
for the pointwise convolution, this layer applies a convo-
lution of 1x1 size to combine the outputs of depthwise
convolution.

In other terms, a standard convolution will take a pic-
ture with its channels and apply its filters then com-
bine the results. Conversely, MobileNet will apply fil-
ters to each channel and then will recombine the results
(the depth of parallelepipeds on the FIG.2 represents the
channels)

FIG. 2: Depthwise convolution and Pointwise convolution

MobileNet reduces computation times by a factor of 8
to 9 compared to standard convolutions. However, the
accuracy is also reduced. In our case, it is more than
enough to detect robots.

Transfer Learning

The principle of transfer learning is to use an already
trained and proven algorithm and modify the last layers
to allow it to perform a different but similar task. In our
case, we will try to detect robots which were not part
of the 90 classes present in the provided MobileNet-V2
algorithm. The algorithm will be fine-tuned by retraining
and should be able to detect a new class as it already
acquired "skills" on the previous training.

Jetson Nano 2GB specifications

Nvidia Jetson nano is a developer kit that has a built-
in GPU composed of 128 cores, a CPU (Quad core) and
2 GB of RAM (LPDDR4). It is designed to train DL
computer vision algorithms in real time via USB webcam
connection [6].

There are other technologies that do the same but with
different latency. This benchmark (in FIG.3) shows the
time of latency (in fps) for a similar framework (Ten-
sorflow) using different technologies (Jetson Nano, Rasp-
berry, Intel Compute stick and Google edge TPU dev
board).

We can see that for our Model (ModelNet-v2), the jet-
son nano is faster than the Intel Neural Compute stick 2
but slower than the Google edge TPU dev board. How-
ever, there is a significant difference in price (150 euros for
Google vs 70 euros for Jetson nano). Regarding the per-
formance/price ratio, Nvidia seems to be the best choice.

Furthermore, Nvidia provides tutorials to learn and
practice IA computer vision.

FIG. 3: Models performances on various boards

GPU over CPU

A CPU (central processing unit) works together with a
GPU (graphics processing unit) to increase the through-
put of data and the number of concurrent calculations
within an application. GPUs were originally designed to
create images for computer graphics and video game con-
soles, but since the early 2010’s, GPUs can also be used
to accelerate calculations involving massive amounts of
data.

A CPU can never be fully replaced by a GPU. A
GPU complements CPU architecture by allowing repeti-
tive calculations within an application to be run in paral-
lel while the main program continues to run on the CPU.
The CPU can be thought of as the taskmaster of the en-
tire system, coordinating a wide range of general-purpose
computing tasks, with the GPU performing a narrower
range of more specialized tasks. Using the power of



3

parallel-computing, a GPU can perform more computa-
tion in the same amount of time as compared to a CPU.

However, the presence of FPGAs in the electronic field
allows to compete with the GPUs by accelerating the
neural networking process as FPGAs can also perform
parallel-computing. In addition, FPGAs use lower power
than GPU. Given that we have done a consumption
study, this advantage would be beneficial to develop in
the near future for better performance at low consump-
tion.

METHODOLOGY AND TESTING

We followed Nvidia tutorials [4] to understand how to
adapt already existing algorithms and projects to create
our own detection AI.

We firstly created a database of images containing
robots. The database was then formatted to be compati-
ble with the training algorithm. Training was performed
for around 30 epochs and the created model was then ex-
ported into onnx. The detectnet algorithm was then used
to run the previously exported model and we were able to
see the performances on real time camera feed. Finally,
the database was updated and the model was retrained
and the results compared. A python program using de-
tectnet and our model was written to display only the
position of detected robots on the image.

Creation of the database

For the database we needed to find or take pictures of
various robots that are commonly used during robot con-
tests (such as Eurobot). We proceeded to find pictures of
those kind of robot on the internet (mainly using google
image).

The objective was to find robots of different size and
shapes in various situations. If we increase the number of
pictures with different camera angles and backgrounds,
our model should be able to find robots in more situa-
tions than if we were to use only the same angle or the
same background. In that case, changing the background
would drastically reduce the performances of the detec-
tion which is why we decided to provide those kind of
pictures. If we wanted to have a highly effective detection
with the same point of view and the same background,
we would have modified the database but in that kind of
application the use of deep learning might not be justi-
fied.

The final database size was composed of 170 images.
Increasing the number of pictures and retrain the model
should increase the performances but would take a larger
amount of training time.

Formatting data and creating directories

In order the use the training algorithm contained in
the docker container provided by Nvidia, various files and
directories had to be created. In the database directory,
3 other directories and a text file were created. We will
explain their structure and their purpose.

The "labels.txt" file must contain the name of the
classes in alphabetical order that we want the AI to de-
tect. In our case there is only one class : "robot". While
training the algorithm will automatically create a second
class which is name "BACKGROUND" by default. In
our case we want the algorithm to only find robots and
consider everything else on the image as background.

The "JPEGImages" directory will contain all our im-
ages in ".jpg" format. Their size can be different but
they should be renamed to only contain basic characters
and we renamed them "robotX" with X the number of
the image for simplicity.

The "Annotations" directory will contain a ".xml" file
for each images. They are associated with the images
using their names. They contain information about the
bounding boxes that we created on each images to specify
the position of the robots manually for training. In order
to create those files we used a program called "labelimg"
provided by the user "tzutalin" on github [2].

Finally the "ImageSets" directory contains another di-
rectory called "Main" in which 4 text files can be found.
Those files will list which images the algorithm should
use for training, validation and testing. A ratio of
80%/10%/10% is recommended and has been used.

Training Algorithm

For training the algorithm, the already provided by
Nvidia "train.py" file was used. The mobilenet algorithm
was selected as the base model for transfer learning and
our training and validation sets were used to fine-tune
mobilenet and obtain our model. We reduced the num-
ber of workers (limiting the parallel-computing power of
the GPU) to avoid crashes and attain a number of 30
epochs which is considered to be enough to get a good de-
tection. This limitation increased stability but increased
the training time (8 hours in total). After testing, the
database was modified and the algorithm retrained.

Exporting model and testing

In order to export the model, the "onnx_export.py"
file was used to convert our ".pth" file into an usable
"onnx" model. The detectnet program was then used
to run our model and real-time live video streaming was
used to check the detection results. After retraining the
results were also compared and an improvement has been



4

made. Finally, a custom detection Python file was writ-
ten in order to retrieve only data regarding the position
of detected robots with a set threshold (80% of certainty
to display the value).

Jetson Nano power consumption

We found a study[5] relative to the Jetson Nano power
consumption where a shunt resistor was placed in serial
connection with the power supply and an oscilloscope
was used to probe each end of the resistor. The current
through the resistor is calculated using Ohm’s law. The
product of this current with the input voltage results in
power consumption.

In this study, the authors have selected four classifica-
tion networks : MobileNetV1, MobileNetV2, ResNet18,
and ResNet50. All of them were pre-trained for Ima-
geNet classification. As an input, they are used a tensor
with a size of 3x224x224 like we did.

FIG. 4: Power consumption with the Jetson Nano

When comparing the MobileNets, we notice a slightly
higher consumption in MobileNetV1. Furthermore, Mo-
bileNetV1 is 4ms faster than MobileNetV2. ResNet50
is the slowest, with a latency of 50ms. It is nearly 3
times slower than ResNet18. The power consumption of
the two ResNets are similar. ResNet18 consumes a little
bit more power than ResNet50. In general, MobileNets
are faster and more energy-efficient than ResNets at a
comparable accuracy. The fastest inference and most
energy-efficient classification can be achieved with Mo-
bileNetV1. When power is optimized, MobileNetV2 is
1% better than V1. Smaller ResNets seem to be out-
dated; not only do they need much more power, but also,
the latency is higher compared to MobileNets.

RESULTS AND DISCUSSION

Detection

Detection of robots was achieved with our custom
model as can be seen on FIG. 5. Moreover, the live cam-
era feed detection can be observed and the position of
the detected robots was extracted.

The performances are good for a first approach
with deep-learning detection algorithms but can still be
greatly improved. Humans or other objects are some-
times mistaken for robots but robots are nearly always
detected. Increasing the threshold value for detection
minimises the number of wrong objects detected but
sometimes causes robots not to be detected.

In order to improve the performances of the model, a
larger robot database (over 1000 images in various back-
grounds and point of view) should be used. As such,
several hours of training are required because the num-
ber of images in the sets are larger and at least 30 epochs
should be done. An important note for training is that
too much epochs should be avoided as the over-fitting
issue could arise (inducing the model to only be able to
detect robots present in the database).

FIG. 5: Robot detection with live camera

Power consumption

Our experiment with a shunt resistor allowed us to
obtain those plots FIG. 6 and FIG. 7

FIG. 6: Power consumptions while running the Jetson Nano

Using these plots, we have calculated the running mean
value and the training mean value that are 5,18 W for
the running mean value and 3.4716 W for the training
mean value. It is important to notice that the training



5

FIG. 7: Power consumptions while training the Jetson Nano

value can change and sometimes go to 6W. The algorithm
indicated a CPU latency of 32ms.

CONCLUSIONS

We have used the Jetson Nano AI kit developed by
Nvidia and we have followed their tutorial to run an al-
gorithm of objects detection. Then, we have learned to
create our own database of robot images to fine-tune a DL
algorithm called MobileNet. After training, we exported
the model and achieved robot detection. We performed
a power consumption study while the Jetson Nano train-
ing the model and when it was running it. Due to its
high power consumption it may not be the best solution
to interface with a competition robot. Finally, we wrote
a Python program that sends directions when a robot is
detected to avoid collision.

ACKNOWLEDGMENTS

We would like to thank Professors Christophe BROSE,
Sylvain GUICHAUX and Gilles SCHEEN for their con-

tinuous support and advice during the realisation of this
project. We are thankful for this opportunity, the re-
sources and material they provided. We could not have
achieved those results without them.

[1] Deep Learning Goodfellow, Ian; Bengio, Yoshua;
Courville, Aaron (2016)

[2] https://github.com/tzutalin/labelImg
[3] https://www.newworldai.com/what-is-deep-learning-

nature-of-machine-learning-and-beauty-of-deep-neural-
network

[4] https://github.com/dusty-nv/jetson-inference
[5] Profiling Energy Consumption of Deep Neural Networks

on NVIDIA Jetson Nano. Stephan Holly, Alexander
Wendt, Martin Lechner

[6] https://developer.nvidia.com/embedded/jetson-nano-
developer-kit

[7] https://www.intel.fr/content/www/fr/fr/products/docs
/processors/movidius-vpu/myriad-x-product-brief.html

[8] Fpgas and embedded vision applications. Vision systems
design

[9] Fpga vs gpu vs cpu hardware options for ai applications.
Avnet

[10] Cpu vs gpu. Omnisci
[11] https://www.le-coin-du-digital.com/index.php/2018/07/11/

deep-learning-vs-machine-learning Julie Lorenzini
[12] Focus : MobileNet, une reconnaissance d’images temps

réel et embarquée surpuissante. Lambert R.
[13] Accelerating DNNs with Xilinx Alveo Accelerator Cards.

Xilinx


