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Abstract

Body size is a trait that can affect plant–pollinator interaction efficiency and

plant reproductive success. We explored the impact of intraspecific size shifts

on the interactions between pollinators and flowering plants under controlled

conditions. We considered two development conditions leading to the produc-

tion of large and small individual flowers of Borago officinalis and Echium

plantagineum. We also used the natural variability of worker size within bum-

blebee colonies to isolate small and large workers. We performed a fully

crossed experiment with the two flower sizes of each plant species and the two

sizes of bumblebee workers. Our results show that the size of both partners

did not affect bee foraging behavior in most of the evaluated parameters and

both bee sizes were equally efficient in depositing pollen. Significant differ-

ences were found only in pollen deposition across the life of a flower in small

flowers of B. officinalis, with the greatest quantity of pollen deposited by small

bees. We did not find a relationship between pollinator size and plant fitness.

Our results suggest that generalist plant–pollinator interactions may be resil-

ient to future potential mismatches in the size of the partners but remain to be

tested if they are still resilient under the new environmental conditions

resulting from global changes.
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INTRODUCTION

Phenotypic plasticity enables species to display different
phenotypes depending on the conditions where the indi-
viduals develop (Klingenberg, 2019), and most morpho-
logical traits display remarkable variability (Fusco &
Minelli, 2010). This is especially relevant for traits that
influence interactions between species. Body size is a trait
that shapes plant–pollinator interactions (Corbet et al.,
2001; Kendall et al., 2019; Klumpers et al., 2019; Morse,
1978; Stout, 2000) and plant reproductive success
(e.g., Esposito et al., 2018). The size of pollinator bodies
and the size of individual flowers influence the contact
between the reproductive organs of plants (i.e., stigma
and anthers) and the pollen-carrying areas on the polli-
nator’s body, affecting pollen deposition (Mesquita-Neto
et al., 2021; Solís-Montero & Vallejo-Marín, 2017).

Under the current changes of environmental condi-
tions driven by global changes, phenotypes of organisms
are expected to be affected, not always in the same
direction (see Gérard, Vanderplanck, et al., 2020;
Miller-Struttmann et al., 2015). Theoretical and experi-
mental studies suggest that plants grown under higher
temperatures tend to have fewer and smaller flowers
(Carroll et al., 2001; Descamps et al., 2018, 2020), but
there are species-specific differences in the effects
(Kuppler et al., 2020; Scaven & Rafferty, 2013). Regarding
bees, there is an overall trend of species having a smaller
body size in warmer areas (Gérard, Martinet, et al., 2020;
Nooten & Rehan, 2020), even if there are also some nota-
ble exceptions (Gérard et al., 2018; Ramírez-Delgado
et al., 2016). Other local threats such as habitat fragmen-
tation can also affect pollinator body size, bigger females
being positively selected in fragmented areas because of
the higher distances between resource patches (Gérard
et al., 2021; Gérard, Martinet, et al., 2020). Overall, the
resulting size probably depends on the mixture of the cli-
matic and local (i.e., habitat quality) conditions faced by
the individuals.

The alteration in the size of bees and flowers can have
strong effects on the success of the interaction. Bee forag-
ing efficiency could decrease if they cannot properly
access nectaries and anthers due to the shift in the rela-
tive position of their body structures (e.g., tongue and
legs) (Dohzono et al., 2011; Klumpers et al., 2019).
Flowers could also be affected if the structures of bees
and flowers do not come into contact, reducing pollen

deposition or removal (Benitez-Vieyra et al., 2006;
Johnson & Steiner, 1997).

In this work, we wanted to study the effect of intra-
specific modification of individual flower and bee sizes
on their interaction and plant fitness, in a global change
scenario. For this purpose, we experimentally manipu-
lated the sizes of flowers to obtain a significant difference
between large and small ones (plants grown in optimal
conditions versus heat and drought treatment, respec-
tively) and selected bees with different sizes and
performed a fully crossed experiment. We selected two
widespread and generalist plant species with accessible
reproductive structures (i.e., Borago officinalis and
Echium plantagineum) and a common bumblebee species
(i.e., Bombus terrestris). We wanted to study if modifica-
tions in the size of bees and flowers (1) have an effect on
bees’ flower-visiting behavior, (2) have an effect on the
pollen deposition on the stigmas, and (3) have conse-
quences on plant reproductive success. We expected that
the modification of bee size would affect their foraging
efficiency and their foraging patterns on the different
flower sizes; that disruptive patterns (large bees on small
flowers or vice versa) would result in lower foraging effi-
ciency than symmetrical patterns (large bees on large
flowers or small bees on small flowers); that when the
traits of both partners resemble the traits occurring in
natural conditions, there is maximum pollen deposition;
and that for plant fitness, patterns would mirror those for
pollen deposition.

MATERIALS AND METHODS

Study system

The two selected plant species were B. officinalis and
E. plantagineum (Boraginaceae). B. officinalis flowers are
actinomorphic, with five petals forming an open corolla.
E. plantagineum flowers have five fused petals and show a
campanulate-tubular shape (Figure 1). In both species,
flowers are hermaphroditic, proterandrous, and
self-compatible and contain four ovules (Castroviejo
Bolibar et al., 2012). These species show floral trait plastic-
ity under different stress conditions (Descamps et al., 2018,
2020). The optimal temperature for flower production in
both species was 21�C (Descamps et al., 2018, 2020). The
selected bee species was B. terrestris (Apidae), a primitively
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eusocial and generalist species displaying a high polymor-
phism between workers, with differences in size between
workers up to 10 times (Rasmont et al., 2008). B. terrestris
is a managed species breed by commercial suppliers.
Colonies were obtained from Biobest Group (Westerlo,
Belgium).

Selection of different phenotypes

Seeds were provided by Plant World Seeds (Newton
Abbott, UK) for E. plantagineum and by Cycle-en-Terre
(Havelange, Belgium) for B. officinalis. Seeds were sown
in a greenhouse and kept at 22�C. After four weeks, half
of the plants were kept at 21�C with daily watering, while
the rest were kept at 27�C and watered twice a week
(further details in Appendix S1: Section S1). Thermic and
drought stress negatively affect flower size of both species
(Descamps et al., 2018, 2020). Plants grew at 27�C were
treated as “small flowers” and plants grew at 21�C as
“large flowers.” For the bumblebees, 10 commercial
queen-right B. terrestris colonies (i.e., colonies where the
queen was present) of around 150 workers were

purchased. The colonies were kept for two weeks in
dark rearing chambers in optimal conditions at a
constant temperature of 27 ± 1�C and 60% humidity
(Vanderplanck et al., 2019). Colonies were fed ad libitum
with sugar syrup (Biosweet, Biobest) and willow pollen.
From each queen-right colony, 40 workers were
extracted, 20 small and 20 large workers, and put into
plastic microcolonies. Two microcolonies were composed
of 10 large workers each, and two of 10 small workers
each (Figure 1a) (see Appendix S1: Section S2 for further
details).

Experimental setup

We performed a fully crossed experiment with the two
plant species, the two sizes of flowers and the two sizes of
bumblebees, resulting in eight treatments overall, that is,
four treatments per plant species (Figure 1c,d). The pots
of each flower size and species were divided into two
groups, corresponding to the two treatments with the dif-
ferent bumblebee sizes (for small flowers, two groups of
80 plants for E. plantagineum and two groups of 90 plants

F I GURE 1 Experimental design. (a) From each queen-right colony (colonies where the queen is present), four derived microcolonies

were set up. Two of these four microcolonies contained 10 large workers, while the other two contained 10 small workers. The same

procedure was applied for 10 queen-right colonies, 5 in the first part and 5 in the second part of the experiment. (b) For each of the eight

experimental treatments that were performed, one microcolony from each of five different queen-right colonies was selected. The five

microcolonies contained bumblebees of the same size. The spatial disposition of each treatment consisted of the five bumblebee

microcolonies located in one extreme of the space (left of the figure) and the pots of the corresponding plants were spread across the

remaining surface. For each of the two plants species, Borago officinalis (c) and Echium plantagineum (d), four treatments were set

corresponding to the four combinations of small and large flowers versus small and large bees.
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for B. officinalis, and for large flowers, two groups of
35 plants for B. officinalis and of 34 plants for
E. plantagineum per bee size treatment). The number of
pots differed because many individuals in the large
flower treatments never produced flowers. In each treat-
ment, there were five microcolonies, all workers being of
the same size category. The plastic microcolonies with
the bumblebees were put inside wooden boxes to main-
tain the dark conditions inside. Holes were drilled as an
exit for the bees. Plant pots and microcolonies were put
together into long tables of a greenhouse, each table cov-
ered with insect-proof mesh leaving a flying cage of
12.6 m3 (dimensions: 3.5 × 1.8 × 2 m; Figure 1b). The
average room temperature was 21�C. The experiment
lasted five days, the period where bumblebees were let to
forage on the plants.

PARAMETER MEASUREMENT

Phenotype of bumblebees and flowers

The length of the marginal cell on the left wing was used
as proxy to evaluate the body size of bumblebee workers,
which has been shown to be highly correlated with over-
all body size and tongue length in bumblebees (Nooten &
Rehan, 2020). This measurement is referred throughout
the text as “size.” The marginal cell was measured in
50 bees of each of the two sizes (i.e., small and large),
25 workers of each size exposed to large and small
flowers.

The traits measured on flowers were flower diameter,
flower depth, and floral surface. As the floral traits were
significantly correlated, we selected only flower diameter
as a proxy for floral size (for further details, see
Appendix S1: Section S3). It was measured as the distance
between the tip of one petal and the tip of the second
petal in a clockwise direction for B. officinalis, consider-
ing the two most distant points of the corolla when seen
from above for E. plantagineum. It was measured on
15 randomly selected individuals, two flowers per
individual (n = 30) per floral size and species. We used
digital calipers (precision 0.01 mm, Facom 1500 mm
digital calipers [Morangis, France]).

Bumblebees–flowers interactions

We followed foraging activity of the bumblebees in all
treatments during the 5 days. Activity usually started at
9:30 a.m. and lasted until 3 p.m. During bumblebee activ-
ity, one forager was visually followed at a time for as long
as possible until it was indistinguishable from other

foragers, or it returned to the nest. We measured the total
time during which foragers were followed, along with the
number of flowers they visited during this time and
the time spent visiting single flowers. We registered
24 (range = 19–35) foraging trips per treatment for
B. officinalis, and 21 (range = 19–25) foraging trips per
treatment for E. plantagineum.

On plants, we measured the deposition of pollen on
the stigmas (1) during a single bumblebee visit and
(2) pollen deposition across the life of a flower (2–3 days).
For the single-visit measurements, 12 plants were bagged
with mesh prior to opening the bumblebee nests. Once
the bumblebees were let to forage, plants were progres-
sively unbagged and observed until one of their flowers
received one visit by a bumblebee. After the visit, the
stigma of the visited flower was collected. For the pollen
deposition across the life of a flower, freshly opened
flowers were marked on the first two days after releasing
the bees. The stigmas of the marked flowers were
collected at the end of the last day of the experiment.
For each measurement, 18–20 stigmas per treatment
from 9 to 10 different individuals were collected. All
stigmas were mounted on microscope glass slides, and
the number of pollen grains was counted under the
microscope (G = 400×).

Fitness

Around 25 fresh flowers per treatment were marked
during the first two days after releasing the bees,
from ±11 individuals (range = 9–14). After the end of the
experiment, plants with marked flowers were maintained
for three weeks in the greenhouse. Fruit set was consid-
ered as the proportion of marked flowers per individual
producing at least one seed; seed set was the average
number of seeds produced per fruit. Fruit and seed pro-
duction were only measured in E. plantagineum because
in B. officinalis, most plants died before producing fruits.

Statistical analyses

The data analysis was performed in R version 4.1.0
(R Core Team, 2021). We ran separate models for each
plant species as we were interested in species-specific pat-
terns. For the traits, we used generalized linear mixed
model (GLMM) to compare small versus large flowers of
each species and bumblebees. To compare flower sizes,
we used a Gamma distribution including the individual
plant as a random effect. For the bees, we used a Gamma
distribution and used the flower size treatment from
which they were collected as a random effect. For the
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interaction and fitness parameters, we only compared
the effect of the two bee sizes inside each floral size for
each plant species because of a different number of plants
between the two sizes (many individuals with large
flowers did not bloom). In all cases, the models consisted
of using the treatment as the sole explanatory variable
followed by a Tukey post hoc comparison to extract only
the pairwise comparisons between the treatments with dif-
ferent sizes of bumblebees within the treatments with the
same size of flowers. For bumblebee behavior, we
performed GLM tests for the response variable time spent
per flower and flowers visited per minute, using an inverse
Gaussian distribution of the data and the log link function.
For the pollen deposition per single visit and pollen depo-
sition across the life of a flower, we performed GLMM
using a negative binomial distribution of the data and indi-
vidual plant as a random effect. For fruit set, we performed
a GLMM with a binomial distribution of the data and indi-
vidual plant as a random effect, and finally for the seed
set, we performed a GLMM with a Poisson distribution of
the data and individual plant as a random effect. The
packages used for the analysis were “lme4” (Bates et al.,
2015), “lmerTest” (Kuznetsova et al., 2017), and “AER”
(Kleiber & Zeileis, 2008).

RESULTS

Phenotypes

Large bees were significantly larger than small
bees (p < 10−16; Figure 2a, Table 1; 3.37 ± 0.14 mm vs.
2.71 ± 0.16 mm, mean ± SD; Appendix S1: Tables S1
and S2). Large flowers were significantly larger than
small flowers in E. plantagineum (p < 10−9; Figure 2b,
Table 1; 2.04 ± 0.27 cm vs. 1.37 ± 0.21 cm) and B. officinalis
(p < 10−9; Figure 2b, Table 1; 2.91 ± 0.16 cm vs.
2.42 ± 0.40 cm; Appendix S1: Tables S1 and S2).

Interactions

Small bumblebees spent significantly more time visiting
large flowers of B. officinalis than large bumblebees did
(p = 0.01; Table 1; Appendix S1: Table S2), while no signif-
icant differences were found on small flowers of
B. officinalis (p = 0.10; Table 1; Appendix S1: Table S2). In
E. plantagineum, small bees spent more time than large
bees on small flowers (p = 0.01; Table 1; Appendix S1:
Table S2), but there were no significant differences for
large flowers (p > 0.50; Figure 2c). Considering the num-
ber of flowers visited per minute, there were no significant
differences between large and small bumblebees in

B. officinalis in either small or large flowers (all p > 0.40;
Table 1; Appendix S1: Table S2) nor between the two sizes
of bumblebees visiting the large flowers of E. plantagineum
(p > 0.80; Table 1; Appendix S1: Table S2). A significant
difference in the number of flowers visited per minute was
found between both bumblebee sizes visiting the small
flowers of E. plantagineum, with large flowers visiting more
flowers per minute (p < 0.001; Table 1, Figure 2d;
Appendix S1: Table S2).

For pollen deposition, the quantity of pollen depos-
ited during a single visit was not affected by the size
of the bumblebees in neither the small or the large
flowers in B. officinalis nor E. plantagineum (all p > 0.40;
Figure 2e, Table 1). For pollen deposition across the life
of a flower, the size of the bumblebees had a significant
effect on small flowers of B. officinalis, where the greatest
quantity of pollen was deposited in the treatment with
small bumblebees (p = 0.004; Figure 2f, Table 1). No sig-
nificant effect of the size of the bumblebees on the pollen
deposited on stigmas was found in the large flowers of
B. officinalis (p > 0.10; Table 1), nor in either the small or
large flowers of E. plantagineum (all p > 0.70; Table 1,
Figure 2f).

Plant fitness

There was no effect of the size of the bumblebees on the
fruit set of either small or large flowers of
E. plantagineum (p > 0.05; Table 1, Figure 2g) nor in the
seed set of either the small or large flowers of
E. plantagineum (p > 0.05; Table 1, Figure 2h).

DISCUSSION

We showed that the size of bumblebees and flowers did
not have a strong effect on the foraging behavior of bees
and that small and large bees were equally efficient in
depositing pollen during a single visit and in most cases
and across the life of a flower. Differences were found
only for the quantity of pollen deposited across the whole
flowering period for small flowers of B. officinalis, with
the greatest quantity of pollen deposited by small bees.
Finally, bumblebee size had no effect on plant reproduc-
tive success in E. plantagineum.

Impact of size shift on bee–plant
interactions

We found differences in foraging behavior between large
and small workers in less than half of the comparisons,
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F I GURE 2 Comparison of (a) size of the two groups of bumblebees (measured as the length of the distal cell of the right wing),

(b) diameter of the flowers of both sizes of the two plant species, (c) time in seconds spent per flower by the two groups of bumblebees on

the two groups of flowers of the two plant species, (d) number of flowers visited per minute by the two groups of bumblebees on the two

groups of flowers of the two species, (e) single-visit pollen deposition by the two groups of bumblebees on the two groups of flowers of the

two species, (f) pollen deposited across the life of a flower by the two groups of bumblebees on the two groups of flowers of the two species,

(g) fruit set by the two groups of bumblebees on the two groups of flowers of E. plantagineum, and (h) seed set by the two groups of

bumblebees on the two groups of flowers of E. plantagineum. In all cases, asterisks above bars comparing the two groups of bumblebees on

each flower size and species represent significant differences, and “ns” represents nonsignificant differences. In each boxplot, the central

line represents the median, the upper and lower limits of the box represent the 75th and 25th percentiles, respectively, whiskers indicate

variability outside the 75th and 25th percentiles (they are calculated as 75th percentile/25th percentile ± 1.5 × (75th percentile −

25th percentile)), and points represent extreme values.
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and small bees always displayed longer times per flower.
We assume that this pattern was related to intrinsic for-
aging differences between larger and smaller workers
(Goulson et al., 2002; Spaethe & Weidenmüller, 2002).
Nevertheless, there were no differences in foraging time

and number of flowers visited per minute in the other
comparisons. Previous studies showed that as long as
bees can reach the nectar, there is no effect of their
traits on the handling time of flowers (Morse, 1978;
Naghiloo et al., 2021).

TAB L E 1 Comparison between group treatments: phenotypes of bees and flowers, interactions from the bee and from the plant point of

view, and the fitness of the plants.

Variable Species Treatments
Data

distribution N
Parameter
estimate p

Phenotypes

Bee size (mm) B. terrestris Large vs. small bees Gamma 100 0.07 10−16

Flower diameter (cm) B. officinalis Large vs. small
flowers

Gamma 55 0.06 10−9

E. plantagineum Large vs. small
flowers

Gamma 61 −0.40 10−16

Interactions—bee behavior

Time per flower (s) B. officinalis LL-LS Inverse Gaussian 39 0.90 0.01

SL-SS Inverse Gaussian 49 0.36 0.10

E. plantagineum LL-LS Inverse Gaussian 39 −0.22 0.65

SL-SS Inverse Gaussian 38 0.59 0.01

No. flowers per minute B. officinalis LL-LS Inverse Gaussian 39 −0.20 0.24

SL-SS Inverse Gaussian 58 −0.10 0.84

E. plantagineum LL-LS Inverse Gaussian 39 0.08 0.85

SL-SS Inverse Gaussian 44 −0.42 <10−3

Interactions—pollen deposition

Single-visit pollen
deposition
(no. pollen grains)

B. officinalis LL-LS Negative
binomial

37 −0.48 0.43

SL-SS Negative
binomial

38 0.40 0.55

E. plantagineum LL-LS Negative
binomial

40 0.22 0.97

SL-SS Negative
binomial

36 0.32 0.93

Pollen deposition across
the life of a flower
(no. pollen grains)

B. officinalis LL-LS Negative
binomial

39 −0.46 0.18

SL-SS Negative
binomial

40 0.76 0.004

E. plantagineum LL-LS Negative
binomial

40 0.30 0.81

SL-SS Negative
binomial

41 −0.34 0.77

Plant fitness

Fruit set E. plantagineum LL-LS Binomial 64 4.84 1.00

SL-SS Binomial 78 1.92 0.07

Seed set E. plantagineum LL-LS Poisson 59 0.23 0.58

SL-SS Poisson 65 −0.04 0.99

Note: The difference corresponds to the difference between the average of the treatments compared in the measured units. p-values lower than 0.05 are marked
in bold.
Abbreviations: LL, large flowers with large bees; LS, large flowers with small bees; SL, small flowers with large bees; SS, small flowers with small bees.
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The size of the bees visiting the plants in our study
proved not to have a high importance for the adequate
pollination service in the studied species. The anthers
and stigmas of the two species are readily accessible to
visitors, so both small and large bees can reach the pollen
and nectar and touch the stigmas of both small and large
flowers. Our results demonstrate that potential alter-
ations in bee and flower size do not necessarily have
strong consequences for the pollination of those plant
species. Pollen deposition involves traits related to
mechanical fit of the interaction (such as throat length,
the distance between the rewards, and the fertile parts of
the flowers), but not always the size (Cosacov et al.,
2014). Only on small flowers of B. officinalis were there
differences in pollen deposition between bee sizes, show-
ing that different combinations of local environmental
conditions can affect ecosystem functioning while others
might go unnoticed. Nevertheless, other systems could be
more impacted by size modifications, especially where
the matching of sizes between flowers and pollinators
has been shown to have consequences in the reproduc-
tive success of the species (Hattori et al., 2021).

Impact of size shift on plant fitness

We did not find differences in the production of fruits
and seeds in E. plantagineum derived from the interac-
tion with differently-sized bumblebees. The fruit of this
plant is a tetrakene, a structure that typically does not
produce four seeds even under hand pollination tests
(Descamps, 2021). As the average of pollen grains depos-
ited on the stigmas is similar to or higher than the num-
ber of ovules per flower in all treatments (Appendix S1:
Table S2), there is probably not a quantitative limitation
of pollen (Aizen & Harder, 2007). Even though we could
not measure the fitness in B. officinalis, we do not expect
an effect of bee size change since stigma pollen loads
were always way higher than the number of ovules per
flower. Finally, the relationship between the size of
interacting partners and plant fitness may influence pol-
len removal and transport rather than pollen deposition
(Benitez-Vieyra et al., 2006; Stanton & Preston, 1988).

Perspectives of research

We worked with two widespread and generalist plant
species, and we may expect many wild common plants
with accessible reproductive structures to show similar
patterns. However, some plant species depend more on
the traits of the pollinators visiting than others, according
to the position and size of their reproductive structures

(Avalos et al., 2021), and they will probably be more
negatively affected by the change in the size of the bees
visiting them. Moreover, the drivers of global change not
only affect the size of flowers but also their multiple
traits. Floral traits show covariation (Kuppler et al.,
2021), and multiple traits seem to be affected in parallel
with size due to stress, such as the scent, life span, phe-
nology, plant size, and number of flowers produced per
plant (Höfer et al., 2021; Kuppler & Kotowska, 2021).
Increased temperature and drought affect the quantity
and quality of floral resources in the studied species
(Descamps et al., 2018, 2020; Descamps, Jambrek, et al.,
2021) and in other species (Carroll et al., 2001;
Descamps, Boubnan, et al., 2021; Rering et al., 2020),
which could affect attraction and recognition of the
plants in natural conditions and consequently their polli-
nation and reproductive success (Descamps et al., 2018;
Sato et al., 2006).

On the other hand, it was out of our scope to test the
effect of thermal and drought stress on the bees themselves,
even if it is proven that they are affected at different levels
(Maebe et al., 2021), nor to test the effect of size modifica-
tion on bee fitness. Future studies should assess the impact
of stressed bees on plant–bee interactions, and how this
could affect in turn as well as evaluate pollinator fitness in
longer experiments. Most species of the genus Bombus are
generalist and highly resistant species (Ghisbain et al.,
2021; Rasmont et al., 2008), which can explain the low
impact of the size shift on their behavior. The impact of
size modification will be stronger for more specialist soli-
tary bees, such as the species of the tribe Osmiini that are
oligolectic on Echium (Sedivy et al., 2013).

CONCLUSIONS

We did not find a strong impact of the modification of
the sizes of both bees and flowers on the bee–plant inter-
actions nor on plant fitness. It seems that generalist polli-
nators are flexible and can adapt to modifications in the
traits of their partners, while the effect on pollen deposi-
tion on plants depends on the combination of traits. This
finding suggests that generalist plant–pollinator interac-
tions may be resilient to shift in the size of the partners
when impacted by global changes. Additional experi-
ments are needed to define if the pollinators and the
plants are impacted when they are also exposed to
the expected environmental global changes during the
interaction itself.
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