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Abstract: The “normobaric oxygen paradox” (NOP) describes the response to the return to normoxia
after a hyperoxic event, sensed by tissues as an oxygen shortage, up-regulating redox-sensitive tran-
scription factors. We have previously characterized the time trend of oxygen-sensitive transcription
factors in human PBMCs, in which the return to normoxia after 30% oxygen is sensed as a hypoxic
trigger, characterized by hypoxia-induced factor (HIF-1) activation. On the contrary, 100% and 140%
oxygen induce a shift toward an oxidative stress response, characterized by NRF2 and NF-kB activa-
tion in the first 24 h post exposure. Herein, we investigate whether this paradigm triggers Advanced
Glycation End products (AGEs) and Advanced Oxidation Protein Products (AOPPs) as circulating
biomarkers of oxidative stress. Secondly, we studied if mitochondrial biogenesis was involved to link
the cellular response to oxidative stress in human PBMCs. Our results show that AGEs and AOPPs
increase in a different manner according to oxygen dose. Mitochondrial levels of peroxiredoxin
(PRX3) supported the cellular response to oxidative stress and increased at 24 h after mild hyperoxia,
MH (30% O2), and high hyperoxia, HH (100% O2), while during very high hyperoxia, VHH (140% O2),
the activation was significantly high only at 3 h after oxygen exposure. Mitochondrial biogenesis was
activated through nuclear translocation of PGC-1α in all the experimental conditions. However, the
consequent release of nuclear Mitochondrial Transcription Factor A (TFAM) was observed only after
MH exposure. Conversely, HH and VHH are associated with a progressive loss of NOP response
in the ability to induce TFAM expression despite a nuclear translocation of PGC-1α also occurring
in these conditions. This study confirms that pulsed high oxygen treatment elicits specific cellular
responses, according to its partial pressure and time of administration, and further emphasizes the
importance of targeting the use of oxygen to activate specific effects on the whole organism.

Keywords: human; peripheral blood mononuclear cells (PBMCs); reactive oxygen species (ROS);
oxidative stress; Nrf2; PGC-1α; mitochondrial biogenesis; Prx3; targeted use of oxygen
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1. Introduction

The appropriate availability and release of oxygen is fundamental to ensure cell func-
tions, including cellular metabolism and growth. A relative decrease in O2 supply, or
hypoxia, may induce acute and chronic pathologies such as cancer, cardiovascular disease,
chronic obstructive pulmonary disease (COPD), metabolic disorders, and other stress re-
sponses [1,2]. However, some interesting positive benefits have been recently published
using intermittent or “pulsed” hypoxia, showing interest in anti-aging, mitochondrial, or
wellness and training effects [3–10]. Other research focuses on the hyperbaric side of hyper-
oxia, finding many benefits and positive outcomes in numerous diseases and other similar
outcomes such as hypoxia in aging, post-traumatic stress disorders, or training, among
others [11–21]. Conversely, chronic oxidative stress can be a consequence of excessive O2
exposure characterized by a persistent condition of an imbalance between the generation
of ROS and the ability of the endogenous antioxidant system to detoxify them [22,23].

Oxidative stress induces glycoxidation reactions and modifications of free amino
groups in proteins, resulting in the generation of Advanced Glycation End Products (AGEs)
and Advanced Oxidation Protein Products (AOPPs). Both AGEs and AOPPs are considered
circulating markers of oxidative stress in several pathologic conditions when an imbalance
among oxidant and antioxidant responses occurs [24].

Although not intuitive, hypoxia also favors the formation of reactive oxygen species
(ROS) and in the long run leads to an increase in oxidative stress, a condition that induces
a strong prolonged inflammatory response [25–27]. In parallel, situations such as intense
aerobic exercise require high amounts of O2 consumption, which consequently leads to an
increased metabolism, an increase in ROS, and oxidative stress [28]. During light-intensity
exercise, breathing oxygen-enriched mixtures, or, on the contrary, hypoxic air, produces
similar reactions [29,30].

To date, it is known that cells respond to O2 fluctuations by activating two transcription
factors: hypoxia-inducible factor-1α (HIF-1α) and Nrf2, which activate the transcription of
multiple target genes [31]. Related to this, we demonstrated in previous works that pulsed
hyperoxia induces a “hypoxic like” response, defined as a “normobaric oxygen paradox”
(NOP) [32–36]. In particular, we observed that the return to a condition of normoxia after
the induction of both mild and severe hyperoxia leads to an increase in HIF1 levels in
human peripheral blood mononuclear cells (PBMCs) [33]. Furthermore, we also observed
an increase in Nrf2 activation in the same experimental conditions [33]. Indeed, Nrf2 is
activated in response to different types of stress related to a high flow of O2, inducing
the repair or degradation of damaged macromolecules [37]. As mentioned before, Nrf2
is primarily known as an important key modulator of cellular metabolism and its target
genes are involved in GSH synthesis, scavenging mitochondrial ROS (peroxiredoxin 3,
Prx3), xenobiotic metabolism (NAD(P)H, quinone oxidoreductase 1, NQO1), and drug
elimination (glutathione S-transferase, GST), thus maintaining ROS homeostasis [38,39].

More recently, new functions for Nrf2 have been highlighted concerning its ability to
activate the transcription of genes involved in mitochondrial biogenesis. Mitochondria are
double-membrane organelles that provide a dynamic and multifaceted role in cell signaling
and metabolism. They also play an important role in cellular redox homeostasis through
their involvement in ROS metabolism as one of the main sites of ROS production in the
cell [40]. Mitochondria are organelles capable of dividing and growing in mass and size
through the mechanism of mitochondrial biogenesis, which can be influenced by different fac-
tors, such as temperature, oxidative stress, and O2 fluctuations [41]. Mitochondrial biogenesis
can be regulated by oxidative-stress-sensitive transcription factors such as NRF1, NRF2, and
mitochondrial transcription factor A (TFAM) [23]. The synthesis of the latter is regulated by
Nrf2. The mechanism is considered as follows: when Nrf2 binds to the EpRE sequences of
NRF1, TFAM, together with the transcriptional coactivator peroxisome proliferator-activated
receptor-c coactivator-1 α (PGC-1α), elicits the synthesis of new mitochondria [42].

Moreover, a regulatory mechanism between PGC-1α and Nrf2 has been shown,
which is important to the enabling of physiological mitochondrial functions and oxidative
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metabolism in different tissues. In particular, upon metabolic stress (fasting) and/or oxida-
tive imbalance (GSH depletion), p53 binds to the PPARGC1A sequence within the promoter
of both human and mouse genes and positively regulates PGC-1α expression, which in turn
co-activates Nrf2 gene expression and stimulates the up-regulation of antioxidant genes mito-
chondrial SOD2 and γGCS. Based on these premises, we hypothesize that PGC-1α and Nrf2
contribute together to counteract oxidative stress and induce mitochondrial biogenesis [43]. In
fact, the protective roles of PGC-1α and Nrf2 in various pathologies have been highlighted [44].
To the best of our knowledge, in the context of molecular signaling induced by O2 fluctuations,
there are no data available regarding the PGC-1α-Nrf2 pathway and TFAM.

Here, we report that NOP induces the activation of a redox-mediated PGC1-α-NRF2
pathway, intersects mitochondrial-protein activation (TFAM), and modulates mitochondrial
cellular adaptive responses to redox imbalance.

2. Results
2.1. Pulsed Hyperoxia Increases AGEs and AOPP Plasma Levels in Humans

We investigated whether O2 fluctuations induced oxidative stress markers. The plasma
levels of AGEs and AOPPs were measured in healthy subjects after one hour of exposure
to mild (MH), high (HH), and very high (VHH) hyperoxia, corresponding to 30%, 100%,
and 140% O2, respectively. The exposure to 30% and 100% O2 significantly affected plasma
levels of AGEs, with a clear increase at 3 h and 24 h after oxygen exposure (Figure 1a,b).
Conversely, VHH exposure increased the plasma level of AGEs, peaking at 0.5 h after the
return to normoxia (Figure 1c). The same trend was observed in AOPP plasma levels, with
HH inducing a plasmatic increase at 3 and 24 h after the return to normoxia (Figure 1e), but
also in the case of VHH, where a significant increase in AOPP occurs earlier (Figure 1f) but
continues for a longer period, up to 24 h. These results confirm the induction of oxidative
stress in human plasma during the NOP effect, with different responses in time.
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Figure 1. AGE and AOPP production following 1 h hyperoxia. Percentual changes in plasma lev-
els of AGEs and AOPPs in healthy subjects exposed to mild hyperoxia (a, d), high hyperoxia (b,e), 
and very high hyperoxia (c, f), corresponding to 30%, 100%, and 140% O2, respectively, for 1 h. 
Measurements were taken at baseline (before O2 exposure), 30 min, 3 h, and 24 h after exposure by 
means of spectrofluorimetric and spectrophotometric detection. Data are reported in percentual 
changes from baseline (n = 4 subjects for each time point). Histograms’ colors are meant to ease 
reading and correspond to post exposure time. Measurements were performed in triplicate. * p < 
0.05; ** p < 0.01; ns: non-significant; RM-ANOVA with Dunnet’s post hoc test. 

2.2. Pulsed Hyperoxia Regulates Peroxiredoxin 3 Levels 
Nrf2 directly regulates mitochondrial ROS homeostasis by promoting detoxification 

of mitochondrial peroxides through Prx3 [39]. Hence, to determine the role of ROS in the 
induction of Nrf2-mediated Prx3 expression, we determined the effect of 30%, 100%, and 
140% O2 administration on human PBMCs at the same time intervals indicated above. 
The Western blot analysis reported in Figure 2 shows that Prx3 was first diminished af-
ter 3 h and 30 min, respectively, for 30% and 100%, then showed a strong increase up to 
24 h. The VHH exposure triggered a different reaction, showing a remarkable and 
unique peck 3 h post hyperbaric oxygen, reaching similar levels as mild oxygen expo-
sures, but this did not last. These results suggest that the ROS-mediated activation of 
Nrf2 triggers the up-regulation of Prx3 protein expression, resulting in the protection of 
PBMCs from oxidative stress associated with the hyperoxic stimuli in a different way 
from normobaric oxygen levels, showing a prolonged, significant increase present after 
24 h, while after 140% oxygen exposure, a single significant increase appears after 3 h. 

Figure 1. AGE and AOPP production following 1 h hyperoxia. Percentual changes in plasma
levels of AGEs and AOPPs in healthy subjects exposed to mild hyperoxia (a,d), high hyperoxia
(b,e), and very high hyperoxia (c,f), corresponding to 30%, 100%, and 140% O2, respectively, for 1 h.
Measurements were taken at baseline (before O2 exposure), 30 min, 3 h, and 24 h after exposure
by means of spectrofluorimetric and spectrophotometric detection. Data are reported in percentual
changes from baseline (n = 4 subjects for each time point). Histograms’ colors are meant to ease
reading and correspond to post exposure time. Measurements were performed in triplicate. * p < 0.05;
** p < 0.01; ns: non-significant; RM-ANOVA with Dunnet’s post hoc test.
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2.2. Pulsed Hyperoxia Regulates Peroxiredoxin 3 Levels

Nrf2 directly regulates mitochondrial ROS homeostasis by promoting detoxification
of mitochondrial peroxides through Prx3 [39]. Hence, to determine the role of ROS in
the induction of Nrf2-mediated Prx3 expression, we determined the effect of 30%, 100%,
and 140% O2 administration on human PBMCs at the same time intervals indicated above.
The Western blot analysis reported in Figure 2 shows that Prx3 was first diminished after
3 h and 30 min, respectively, for 30% and 100%, then showed a strong increase up to
24 h. The VHH exposure triggered a different reaction, showing a remarkable and unique
peck 3 h post hyperbaric oxygen, reaching similar levels as mild oxygen exposures, but
this did not last. These results suggest that the ROS-mediated activation of Nrf2 triggers
the up-regulation of Prx3 protein expression, resulting in the protection of PBMCs from
oxidative stress associated with the hyperoxic stimuli in a different way from normobaric
oxygen levels, showing a prolonged, significant increase present after 24 h, while after
140% oxygen exposure, a single significant increase appears after 3 h.
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ern blot analysis. The density of immunoreactive bands was calculated using the software Quanti-
ty one (Bio-Rad) and data are shown as a ratio of PRX3/B-actin. Results are expressed as percentu-
al change (n = 4) (mean ± SEM) in comparison to baseline (0); Histograms’ colors are meant to ease 
reading and correspond to post exposure time. ns: not significant; *: p < 0.05, **: p < 0.01, ***: p < 
0.001; RM-ANOVA with Dunnet’s post hoc test. 
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icantly increased after 30 min, up to 24 h in MH (Figure 3a). HH treatment induced 
PGC-1α nuclear translocation only at 3 h (Figure 3b). VHH exposure was associated 
with an increase similar to what was observed after MH exposure (Figure 3c). These re-
sults indicate that the activation of PGC-1α precedes that of Nrf2, which is activated only 
at 3 h, suggesting a possible synergy between the two transcription factors. Similarly, 
HH treatment always causes an induction of PGC-1α at 30 min that goes along with the 
activation of Nrf2, which begins to increase at 30 min but peaks at 3 h. All together, these 
data suggest that Nrf2 is involved in the transcription and subsequent activation of PGC-
1α in our experimental conditions. 

 
Figure 3. PGC-1α nuclear translocation following 1 h hyperoxia: (a) Mild hyperoxia (30% O2); (b) 
high hyperoxia (100% O2); (c) very high hyperoxia (140% O2) before and after the recovery to 
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Figure 2. Mitochondrial Prx3 protein expression following 1 h hyperoxia. (a) Mild hyperoxia
(30% O2); (b) high hyperoxia (100% O2); (c) very high hyperoxia (140% O2) before and after the
recovery to normoxic conditions. In the above histograms, the picture shows a representative Western
blot analysis. The density of immunoreactive bands was calculated using the software Quantity one
(Bio-Rad, Hercules, CA, USA) and data are shown as a ratio of PRX3/B-actin. Results are expressed as
percentual change (n = 4) (mean ± SEM) in comparison to baseline (0); Histograms’ colors are meant
to ease reading and correspond to post exposure time. ns: not significant; *: p < 0.05, **: p < 0.01,
***: p < 0.001; RM-ANOVA with Dunnet’s post hoc test.

2.3. Pulsed Hyperoxia Leads to PGC-1α Up-Regulation, but Only MH Results in TFAM Activation

We analyzed the protein content of PGC-1α by Western blot analysis at 0.5, 3, and 24 h
after 30%, 100%, and 140% O2 administration. As shown in Figure 3, PGC-1α significantly
increased after 30 min, up to 24 h in MH (Figure 3a). HH treatment induced PGC-1α nuclear
translocation only at 3 h (Figure 3b). VHH exposure was associated with an increase similar
to what was observed after MH exposure (Figure 3c). These results indicate that the
activation of PGC-1α precedes that of Nrf2, which is activated only at 3 h, suggesting a
possible synergy between the two transcription factors. Similarly, HH treatment always
causes an induction of PGC-1α at 30 min that goes along with the activation of Nrf2,
which begins to increase at 30 min but peaks at 3 h. All together, these data suggest
that Nrf2 is involved in the transcription and subsequent activation of PGC-1α in our
experimental conditions.
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Figure 3. PGC-1α nuclear translocation following 1 h hyperoxia: (a) Mild hyperoxia (30% O2);
(b) high hyperoxia (100% O2); (c) very high hyperoxia (140% O2) before and after the recovery to
normoxic conditions. In the above histograms, the picture shows a representative Western blot
analysis. The density of immunoreactive bands was calculated using the software Quantity One
(Bio-Rad) and data are shown as ratio of PGC-1α/Lamin B. Results are expressed as percentual
change (n = 4) (mean ± SEM) in comparison to baseline (0); Histograms’ colors are meant to ease
reading and correspond to post exposure time. ns: not significant; *: p < 0.05, **: p < 0.01, ***: p < 0.001;
RM-ANOVA with Dunnet’s post hoc test.

Even though all tested oxygen exposures were associated with a significant activation
of PGC-1α, only MH exposure resulted in a significant TFAM release and in the activation
of mitochondrial biogenesis (Figure 4).
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and 69.0 ± 8.7 kg weight. Participants were prospectively randomized into three groups, 
each comprising 4 persons, and exposed to different oxygen PO2 levels for 1 h. The first 
group received 30% O2 (0.3 bar; 300 hPa PO2) by means of an orofacial non-rebreather 
mask with a reservoir; the breathing gas flow (from a pressurized gas tank with the ap-
propriate mixture) was set at 10 L/min, with care being taken to fit and tighten the mask 
on the subject’s face. Group two received 100% O2 (1.0 bar, 1000 hPa PO2) from an oxy-
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Figure 4. TFAM activation following 1 h hyperoxia. (a) Mild hyperoxia (30% O2); (b) high hyperoxia
(100% O2); (c) very high hyperoxia (140% O2) before and after the recovery to normoxic conditions.
In the above histograms, the picture shows a representative Western blot analysis. The density of
immunoreactive bands was calculated using the software Quantity One (Bio-Rad) and data are shown
as a ratio of TFAM/Lamin B. Results are expressed as percentual change (n = 4) (mean ± SEM) in
comparison to baseline (0); Histograms’ colors are meant to ease reading and correspond to post
exposure time. ns: not significant; *: p < 0.05, **** p < 0.0001; RM-ANOVA with Dunnet’s post hoc test.
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3. Materials and Methods

This study was conducted in accordance with the Declaration of Helsinki [45] and ap-
proved by the Academic Ethical Committee of Brussels (B200-2020-088). Every participant
was fully informed of the procedures and was able to quit at any step of the procedure;
written informed consent was obtained.

3.1. Experimental Protocol

After the obtention of full, written informed consent, twelve healthy non-smoking
subjects (4 females and 8 males) enrolled for the experiment. These were physiotherapy
students aged 21.8 ± 2.3 and 21.25 ± 2.1 years old (mean ± SD), with 1.75 m ± 6.6 height
and 69.0 ± 8.7 kg weight. Participants were prospectively randomized into three groups,
each comprising 4 persons, and exposed to different oxygen PO2 levels for 1 h. The first
group received 30% O2 (0.3 bar; 300 hPa PO2) by means of an orofacial non-rebreather
mask with a reservoir; the breathing gas flow (from a pressurized gas tank with the
appropriate mixture) was set at 10 L/min, with care being taken to fit and tighten the
mask on the subject’s face. Group two received 100% O2 (1.0 bar, 1000 hPa PO2) from
an oxygen concentrator (NewLife Intensity, CAIRE Inc., Ball Ground, GA, USA) with a
similar non-rebreathing mask setup. Group three received 140% O2 (1.400 bar, 1400 hPa
PO2), using a one-person hyperbaric chamber (Biobarica, Buenos Aires, Argentina); the
subject was breathing pure oxygen, 10 L/min, from a non-rebreathing mask inside the
pressurized chamber.

Venous blood samples were collected at baseline (before oxygen exposure), 30 min, 3 h,
and 24 h after exposure. Subjects were instructed not to take any medication or perform
strenuous physical exercise 24 h before and, stay in altitude up to 2 weeks before and
during the entire study protocol and until blood collection was complete.

Fifteen milliliters of blood were collected in ethylenediaminetetraacetic acid (EDTA).
Human PBMCs were isolated from whole blood using a standard Histopaque-1077 (Sigma-
Aldrich, Burlington, MA, USA) precipitation protocol, according to the manufacturer’s
instruction, before oxygen breathing (time 0), as well as at 0.5, 3, and 24 h after exposure
to hyperoxia. The absence, of hemolysis in plasma was confirmed by measuring the
absorbance of plasma at 414 nm, using an absorbance of 0.2 as a cut-off.

3.2. Nuclear Lysate Preparation and Western Blotting Analysis

Nuclear lysate from human PBMCs was prepared as previously described by Fratan-
tonio et al. [33]. In total, 20 µg of nuclear proteins, quantified with the Bradford method
(Bio-Rad Laboratories Inc., Hercules, CA, USA), was separated by gel electrophoresis on
4–12% Bis-Tris Criterion XT precast gels (Bio-Rad Laboratories Inc., Hercules, CA, USA)
and electroblotted onto polyvinylidene fluoride membranes (Amersham Pharmacia Biotech
Inc., Piscataway, NJ, USA). Immunoblotting was performed with rabbit PGC-1α antibody
(1:1000), rabbit Prx3 antibody (1:1000), and mouse anti-Lamin B antibody (1:1000) (Santa
Cruz Biotechnology, Dallas, TX, USA), followed by peroxidase-conjugated secondary anti-
body HRP labeled goat anti-rabbit Ig (BD Pharmigen, San Diego, CA, USA) (1:5000) and
goat anti-mouse IgM secondary antibody HRP conjugate (Thermo Scientific, Waltham, MA,
USA) (1:10,000), and visualized with an Electrochemiluminescence (ECL) Western blotting
system (Amersham Biosciences, Buckinghamshire, UK).

3.3. Plasma Analysis of AGEs and AOPPs

Determination of AGEs was based on the spectrofluorimetric detection as previously
reported [46]. Briefly, blood plasma was diluted 1:50 with phosphate-buffered saline (PBS)
pH 7.4 and fluorescence intensity was recorded at the emission maximum (~440 nm) upon
excitation at 350 nm (spectrofluorometer, Shimadzu, Carlsbad, CA, USA). The serum
concentration of AGEs was normalized to the total protein amount, determined by the
Bradford assay and expressed in arbitrary units (AU) per gram of protein (AU/g prot).
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Determination of AOPPs was based on spectrophotometric detection, as previously
described [46]. Blood plasma (100 µL) or the same volume of chloramin T (0–100 µmol/L),
for calibration, was diluted 1:5 with PBS pH 7.4. Subsequently, 25 µL of 1.16 M KI and 50 µL
of acetic acid were added to the diluted solutions and absorbance was measured immedi-
ately at 340 nm (spectrofluorometer, Shimadzu, Carlsbad, CA, USA). The concentration of
AOPPs is expressed in chloramine T units (µmol eq Cl T/L).

3.4. Statistical Analysis

All statistical tests were performed using a standard computer statistical package,
GraphPad Prism version 9.00 for MacOS (GraphPad Software, San Diego, CA, USA).

Normality of data was verified by means of Kolmogorov–Smirnoff or Shapiro–Wilk
tests, allowing us to assume a Gaussian distribution. Since each participant was their own
control, data were analyzed using repeated measures ANOVA with Dunnett’s multiple
comparison or Tukey’s post hoc test, and if the Gaussian distribution was not ascertained,
Friedman with Dunn’s post-test was preferred.

A threshold of p < 0.05 was considered statistically significant. All data are presented
as mean ± standard error on the mean (SEM).

4. Discussion

In this study, we identified changes in the plasma levels of AGEs and AOPPs in
healthy human subjects after different O2 concentration exposures. We also examined the
involvement of the mitochondrial response to oxygen-fluctuation-induced oxidative stress
by the activation of PRX3 and the modulation of mitochondrial biogenesis.

Previous observations indicate that breathing 30% and 100% oxygen elicited a sig-
nificant increase in plasmatic ROS, with a peak at 8 h after oxygen breathing, while the
exposure to 140% (1.4 ATA) oxygen was associated with an increase in plasmatic ROS at
2 h after the return to normoxia [33,47,48].

In line with these results, we observed a consequent increase in oxidation end products
in human plasma. In particular, the exposure to 30% and 100% oxygen increased the plasma
levels of AGEs (Figure 1a,b) at 3 and 24 h, while 140% oxygen induced a higher significant
increase in AGEs faster, with a peak at 0.5 h, and progressively returned close to baseline
levels after 24 h (Figure 1c).

A similar trend was also observed for AOPPs for 30% and 100% oxygen (Figure 1c,d),
while for 140% oxygen a progressive significant increase starting from 0.5 h up to 24 h
(Figure 1e) showed an opposite trend to AGEs for the same exposure.

Advanced glycation end products (AGEs) are derived from nonenzymatic glycation
occurring between the reactive carbonyl group of a reducing sugar and nucleic acids, lipids,
or proteins, causing underlying tissue damage [49]. In addition to nonenzymatic glycation,
AGEs can also be formed through the polyol pathway and lipid peroxidation. AGEs
produce reactive oxygen (ROS) and nitrogen (RNS) species, as well as oxidative stress and
inflammation [50]. We already acknowledged such oxidative stress increases with several
markers, but without measuring the Maillard reaction; these results confirm our previous
findings of higher oxidative stress for hyperbaric oxygen exposures at 1.4 ATA (140%) and
2.5 ATA after a single session [47] but, in the present results, with a faster recovery for 140%.
These results were expected since we already found lipidic peroxidation after all levels of
oxygen exposure, from hypoxia to hyperbaric hyperoxia, sometimes still present 48 h post
exposure [27,47,51].

Interestingly, Advanced Oxidation Protein Products (AOPPs), a biomarker of oxidant-
mediated protein damage which can increase ROS levels, follow the same tendency of
AGEs except for the 140% (1.4 ATA) exposure. We are unable to fully explain this trend;
however, we observed a diminished cellular response compared to other exposures at
1.4 ATA [52]. It is known that oxygen exposure elicits “Oxy-Inflammation”, a term pro-
posed by Valacchi et al. [53] for a condition characterized by the alteration of systemic
inflammation and severely compromised redox balance, and we can understand why
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several hyperbaric sessions (at 2.5 ATA) are needed to adapt and counteract inflammatory
or oxidative stress [54]. Lower oxygen levels or even “hyperbaric air” have faster cellular
hormetic responses [33,55].

The increase in oxidative stress and its metabolic consequences was confirmed by
measuring, in human PBMCs, the cytosolic level of Peroxiredoxin 3 (Prx3), a mitochon-
drial antioxidant protein which serves as a major antioxidant enzyme and eliminates
approximately 90% of H2O2 in mitochondria [56].

We previously demonstrated that the administration of pulsed hyperoxia induces a
“paradoxical” hypoxic response characterized by Nrf2 activation [33]. In particular, we
observed an increase in Nrf2 nuclear protein levels at 3 h when 30% and 140% O2 were
administered. Nrf2 levels remained constant up to 24 h. Conversely, the administration of
100% O2 was associated with an increase in Nrf2 levels, starting at 30 min after the return
to normoxia and levelling back to the baseline at 24 h [33].

The understanding of the roles of Nrf2 and PGC-1α in the regulation of oxidative
stress and in maintaining mitochondrial homeostasis could provide novel information to
support the treatment of various pathologies associated with O2 fluctuations or to develop
a novel approach to oxygen use [52,57].

One of the accepted mechanisms is the following: PGC-1α activates Nrf2 via the
inhibition of GSK3b. GSK3b is inactivated by p38, which is positively regulated by PGC-
1α. Therefore, the PGC-1α/p38/GSK3b/Nrf2 cascade is the most probable pathway for
mitochondrial DNA transcription [58].

It is also possible that Nrf2 and PGC-1α form a feedback loop together [38]; our results
show a largely parallel evolution of both (see Figure 5a–c).
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Figure 5. NRF2 and PGC-1α nuclear translocation 1 h hyperoxia. Percentual changes in plasma level
of NRF2 (redrawn from Fratantonio et al. 2021 [33]) and PGC-1α in healthy subjects exposed to mild
hyperoxia (a,d), high hyperoxia (b,e), and very high hyperoxia (c,f), corresponding to 30%, 100%, and
140% O2, respectively, for 1 h. Measurements were taken at baseline (before O2 exposure), 30 min, 3 h,
and 24 h after exposure by means of spectrofluorimetric and spectrophotometric detection. Data are
reported in percentual changes from baseline (n = 4 subjects for each time point). Histograms’ colors
are meant to ease reading and correspond to post exposure time. Measurements were performed in
triplicate. * p < 0.05; ** p < 0.01; *** p < 0.001; ns: non-significant; RM-ANOVA with Dunnet’s post
hoc test.
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In our experimental conditions, despite the activation of PGC-1α, we observed a signif-
icant activation of mitochondrial biogenesis, in terms of TFAM expression, only following
the exposure to mild hyperoxia. This suggests that the ability of PGC-1α to activate NFR2
and TFAM occurs when oxidative stress levels can be handled by antioxidant cellular
responses. When oxidative stress levels overcome the cellular capacity to counteract oxida-
tive stress, as previously reported, NF-kB activation takes over [33] and the mitochondrial
biogenesis response is lost.

Moreover, erythropoietin (EPO) was found to activate mitochondrial biogenesis [59].
Therefore, EPO can potentially activate both the Nrf2 and PGC-1α cascades. We have
shown that in the NOP mechanism, varying oxygen levels below hyperbaric doses can,
after one single session, activate EPO production up to 36 h. On the contrary, a single session
of hyperbaric oxygen showed a reduction in plasmatic erythropoietin for 24 h [32,34,60,61].

5. Conclusions

This study emphasizes the importance of targeting the use of oxygen to activate
specific cellular responses [52,57]. Further analysis is needed to understand how several
sessions of different levels of oxygen breathing, for different durations, and with different
in-between recovery periods, will modulate such responses.

The Renaissance physician Paracelsus noted that, “Nothing is without poison—the
poison is in the dose”. The contemporary interpretation of this statement is that dose and
effect move together in a predictably linear fashion and lower exposures to a hazardous
compound will generally generate lower risks.

Our results show that this “linearity” on reduced risk is not only present on the toxicity
side, but also on the elicited response. In fact, it seems that in the first 24 h following a
session, lower oxygen concentrations act more positively than higher levels of hyperoxia
on mitochondrial biogenesis factors.

We are aware that the number of subjects is small, and this limits the “power” of
our study. Nonetheless, we consider this report a pilot study. Moreover, our data allow
a better characterization of the complex spectrum of cell responses to pulsed oxygen
concentration at the whole-organism level, resulting in a proof of principle study indicating
the involvement of mitochondrial activity in the managing of oxidative stress. Additional
studies are surely warranted to corroborate and confirm our observation.

When an important production of ROS is present within the cytosol, (left part of the
figure), pathways activated by Advanced Glycation End-products (AGEs) and Advanced
Oxidation Protein Products (AOPPs) are initiated. AGEs trigger the AGE receptor (RAGE),
leading to further formation of ROS and proinflammatory cytokines. AOPPs may induce
oxidative stress through NADPH oxidases (Nox). As depicted in the lower left corner, NRF1-
2 interaction, along with the transcriptional coactivator PGC-1α, triggers the synthesis of
TFAM, facilitating mitochondrial biogenesis (indicated by the green dotted lines). This
process indirectly contributes to ROS production since mitochondria serve as a significant
ROS source. At the same time when a level of ROS is not to high and intermittent, TFAM
maintains mitochondrial ROS balance by increasing the production of Prx3 (green dotted
lines) thus facilitating the detoxification of mitochondrial peroxides via Prx3 (shown by the
red dotted line from Prx3 to ROS) (Figure 6).
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NOP normobaric oxygen paradox
ATA Atmosphere absolute
PBMCs peripheral blood mononuclear cells
NF-kB Nuclear factor kappa-light-chain-enhancer of activated B
FiO2 Inspired Fraction of Oxygen
GSH Glutathione
H2O2 Hydrogen peroxide
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HBOT Hyperbaric oxygen therapy
AGEs Advanced Glycation End Products
AOPPs Advanced Oxidation Protein Products
NOx Nitric oxide metabolites
NRF2 Nuclear Factor Erythroid 2 Related—Factor 2
ROS reactive oxygen species
PRX3 peroxiredoxin
TFAM Nuclear mitochondrial transcription factor A
PGC-1α proliferator-activated receptor-c coactivator-1 α

GSH Glutathione
EpRE Electrophile Response Element
RAGE Receptor for Advanced Glycation End-products
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