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Abstract In the context of community detection, Correlation Clustering (CC)6

provides a measure of balance for social networks as well as a tool to explore7

their structures. However, CC does not encompass features such as the media-8

tion between the clusters which could be all the more relevant with the recent9

rise of ideological polarization. In this work, we study Correlation Clustering10

under mediation (CCM), a new variant of CC in which a set of mediators is11

determined. This new signed graph clustering problem is proved to be NP-12

hard and formulated as an integer programming formulation. An extensive13

investigation of the mediation set structure leads to the development of two14

efficient exact enumeration algorithms for CCM. The first one exhaustively15

enumerates the maximal sets of mediators in order to provide several relevant16

solutions. The second algorithm implements a pruning mechanism which dras-17

tically reduces the size of the exploration tree in order to return a single optimal18

solution. Computational experiments are presented on two sets of instances:19

signed networks representing voting activity in the European Parliament and20

random signed graphs.21
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1 Introduction25

Community detection is largely applied to understanding the structure of so-26

cial networks. In the presence of a network with antithetical relationships27

(like/dislike, for/against, similar/different...) community detection can be mod-28

eled as correlation clustering (CC) (Doreian and Mrvar, 1996), a signed graph29

clustering problem later formalized by Bansal et al. (2004) for document clas-30

sification.31

In a signed graph, the edges are labeled as either positive (+) or negative (-32

). The CC problem consists in partitioning the vertices of such a graph while33

minimizing disagreements, i.e., the total number of positive edges between the34

clusters plus the total number of negative edges inside the clusters. A weighted35

version of the problem was lately defined in Demaine et al. (2006).36

The CC problem is related to the concept of structural balance introduced37

in the field of social network analysis (Heider, 1946; Cartwright and Harary,38

1956). According to structural balance theory, the equilibrium of a social sys-39

tem is associated with the propensity of individual elements to be organized40

in groups avoiding conflictual situations. This concept is perfectly described41

by graph theory (Davis, 1967). A signed graph is structurally balanced if it42

can be partitioned into clusters, such that all positive (resp. negative) edges43

are located inside (resp. in-between) these modules.44

Applications of the CC problem overtakes the area of social networks anal-45

ysis and also arise in system biology (DasGupta et al., 2007), portfolio analysis46

for risk management (Figueiredo and Frota, 2014; Harary, 2002), voting be-47

havior (Arinik et al., 2017; Kropivnik and Mrvar, 1996), document classifica-48

tion (Bansal et al., 2004), surface detection in 3D images (Kolluri et al., 2004),49

and in the detection of embedded matrix structures (Figueiredo et al., 2011).50

Variants of the CC problem have been proposed and discussed in the litera-51

ture. Some of them motivated by a redefinition of the concept of structural52

balance (Doreian and Mrvar, 2009) or by applications to community detection53

in unsigned graphs.54

The recent rise of ideological polarization makes it harder to reach agree-55

ments across partisan lines (Abramowitz and Saunders, 2008). Since mediation56

could allow productive exchanges in polarized signed networks, we study a new57

variant of CC in which a set of key-players, called mediators, is additionally58

identified. We apply the concept of positive mediation as introduced by (Dor-59

eian and Mrvar, 2009): a set of mediators must have good relations among60

themselves and with other individuals in the network. We define a good re-61

lation by two parameters, α and β, which represent the maximal proportion62

of negative to positive relations allowed inside and outside the mediation set,63

respectively. The aim of the correlation clustering problem under mediation64

(CCM) is to obtain a partition in which one cluster is composed of media-65

tors and which minimizes the imbalance (as defined in original CC) of the66

remaining clusters.67

Unlike the CC problem, to the best of our knowledge, the CCM problem68

only has applications in social networks analysis. In this work, we are not only69
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focused on identifying one optimal set of mediators (a unique optimal solu-70

tion) but also on determining several of them as various as possible (multiple71

and diverse solutions). Indeed, in a decision aid process based on the CCM72

problem, such sets can be used as a basis to form committees (e.g. in politi-73

cal institutions): identifying alternative solutions can enable to assign different74

committees to different tasks (e.g., one committee per law or topic). Moreover,75

multiple optimal solutions can also be used to indicate the importance of each76

individual in the whole group. For example, if only one element is present in77

all the sets of mediators, it indicates that it plays a major role in the social78

network.79

The contributions of this paper are fourfold.80

1. We introduce the CCM problem, a new variant of CC in which the defini-81

tion of a set of mediators is parametrized by two parameters.82

2. We prove that CCM is NP-hard and formulate this problem as an integer83

linear programming model.84

3. We provide two enumeration algorithms for CCM which take advantage85

of properties of sets of mediators to break symmetry in the search tree.86

One of these algorithms is designed for generating all the maximal sets of87

mediators.88

4. We present extensive computational results to compare the performances89

of these algorithms to those of CPLEX applied to our formulation.90

The paper is organized as follows. The next section is dedicated to a review91

of the works related to the CCM problem. We give the notations and the formal92

definition of this problem in Section 3 and prove its NP-hardness. We introduce93

an ILP formulation of the problem in Section 4. Section 5 is devoted to the94

enumeration algorithms. Computational experiments are given in Section 6.95

We finally conclude the paper in Section 7.96

2 Related works97

The review of the literature is divided in three sections: exact optimization98

methods for CC (Section 2.1), variants of CC (Section 2.2) and group selection99

problems treated from a network optimization point of view (Section 2.3.)100

2.1 Exact methods for CC101

A combinatorial branch-and-bound was proposed by Brusco and Steinley (2009)102

to solve instances with up to 21 vertices. An Integer Linear Programming (ILP)103

formulation based on the vertex clustering formulation of (Mehrotra and Trick,104

1998) was also considered in the literature (see for example (Demaine et al.,105

2006; Arinik et al., 2017, 2021)). In (Figueiredo and Moura, 2013) the two106

approaches were compared. The authors showed that the ILP approach could107

handle larger graphs and required less time for most of the benchmark in-108

stances. This approach was used in a branch-and-cut framework on complete109
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graphs with up to 50 vertices (Arinik et al., 2021) and on non-complete ones110

with up to 400 vertices (Arinik et al., 2017).111

In a recent work (Arinik et al., 2021), the authors showed that the optimal112

solution space of the CC problem can be composed of multiple and diverse op-113

timal solutions. The applications solved by this clustering problem motivated114

the same authors to develop a method for generating its complete space of115

optimal solutions (Arinik et al., 2023). The algorithm combines an exhaustive116

enumeration strategy with neighborhoods of varying sizes, to achieve compu-117

tational effectiveness.118

2.2 Variants of CC119

The variants of the CC problem can be divided in two groups: with redefinition120

of the objective function or with redefinition of the clustering constraints.121

2.2.1 Alternative objectives122

CC seeks a partition which minimizes the total number of disagreements. Dor-123

eian and Mrvar (2009) observed that this definition does not encompass some124

important features. For example, vertices which agree with hostile subgroups125

increase the imbalance of the graph according to this definition. The authors126

considered that such vertices are potential mediators which should have a pos-127

itive effect on the balance. Consequently, they proposed a relaxed definition of128

the objective as the sum of maximum disagreements inside each cluster plus129

the sum of maximal disagreements among each pair of clusters in the partition.130

The Relaxed Correlation Clustering (Figueiredo and Moura, 2013; Levorato131

et al., 2017; Arinik et al., 2017) (RCC) consider this objective.132

Local disagreement functions have also been used in the literature. Both133

works presented in (Kalhan et al., 2019; Puleo and Milenkovic, 2018) are based134

on a disagreements vector, i.e, a vector indexed by the vertices where the i-th135

index is the number of disagreements at vertex i. In (Puleo and Milenkovic,136

2018), the highest value in the disagreement vector is minimized while in137

Kalhan et al. (2019) the lq norm of the disagreements vector is minimized.138

Eventually, motivated by network analysis applications defined on unsigned139

graphs, Veldt et al. (2018) introduced the Lambda Correlation Clustering140

(LambdaCC), a weighted version of CC in which the weight of the edges is141

either λ ∈ [0, 1] or 1− λ.142

2.2.2 Alternative constraints143

The first CC variant which redefines the clustering constraints is Motif Corre-144

lation Clustering (MotifCC) (Li et al., 2017). Also motivated by network anal-145

ysis applications, MotifCC associates a sign, positive or negative, to subgraph146
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structures (called motifs) and minimizes the number of clustering errors as-147

sociated with both edges and motifs. This variant generalizes CC to the hy-148

pergraph setting where the order of the graph is defined by the size of the149

motifs considered. In Fair Correlation Clustering (FairCC) the vertex parti-150

tion must satisfy fairness constraints (Ahmadian et al., 2020). In this variant,151

each vertex of the graph has a color associated and the colors in the partition152

must be distributed according to a given fair property. Figueiredo and Moura153

(2013) defined the first version of CC with mediation following the discussions154

in (Doreian and Mrvar, 2009). Their definition of a set of mediators was very155

restrictive and we show that the problem defined in Section 2.3 generalises it.156

Different approaches have been considered to solve these problems. ILP157

formulations were introduced in (Figueiredo and Moura, 2013) for RCC. Ap-158

proximation algorithms were proposed for LambdaCC and MotifCC (Veldt159

et al., 2018; Li et al., 2017; Gleich et al., 2018) as well as for FairCC (Kalhan160

et al., 2019; Puleo and Milenkovic, 2018). A simulated annealing was consid-161

ered for MotifCC in Li et al. (2017) while Iterated Local Search methods were162

proposed for RCC (Levorato et al., 2017).163

2.3 Group selection in social networks164

Several works in the literature have been dedicated to the identification of165

a set of individuals playing a specific role in a network. These individuals166

can be named key players (Borgatti, 2006; Ortiz-Arroyo, 2010), influential167

vertices (Li et al., 2011), or mediators (Figueiredo and Moura, 2013). The set168

of vertices can be selected through a global network optimization criteria or169

by ranking network elements according to an individual measure (e.g., vertex170

centrality (Borgatti, 2003)). We focus on the first approach as the second one171

does not provide optimality guarantee (see examples in (Ortiz-Arroyo, 2010)).172

The key players problem as introduced by (Borgatti, 2003), consists in se-173

lecting k vertices in a network that maximizes or minimizes the disruption174

of the residual network obtained by removing them. Different measures and175

heuristic procedures have been proposed in the literature for this problem (Bor-176

gatti, 2006; Ortiz-Arroyo, 2010). (Li et al., 2011) studied the problem of finding177

the set of key players controlling the bottlenecks of influence propagation in178

a social network. The authors proposed a three-steps heuristic to solve this179

variant, named the k−mediators problem. We refer the reader to references180

in (Li et al., 2011) for works on vertex selection for influence maximization.181

None of these works considered exact methods even when the size of the182

networks is small (see for example (Borgatti, 2006)). The CCM problem de-183

fined in this work is based on the mediation concept described by Doreian and184

Mrvar (2009). It has only been treated once in the literature (Figueiredo and185

Moura, 2013) and for a very particular case where both parameters, α and β,186

defining the feasibility of a set of mediators are equal to 0.187
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3 Notation and problem definition188

Let G = (V,E) be an undirected graph, where V and E are the sets of vertices189

and edges, respectively. Consider a function s : E → {+,−} that assigns a190

sign to each edge in E. An undirected graph G together with a function s is191

called a signed graph, denoted here by G = (V,E, s). An edge e ∈ E is called192

negative if s(e) = − and positive if s(e) = +. We note E− and E+ the sets of193

negative and positive edges in a signed graph, respectively. Let n = |V |.194

The imbalance of a vertex partition is defined by its number of disagree-195

ments, that is the number of positive edges between two clusters and negative196

edges inside a cluster. The CC problem (Bansal et al., 2004) aims to find a197

partition of the vertices which minimizes the imbalance. In the weighed version198

of the CC problem, an extra function w : E → R+ is added. In order to define199

the imbalance in that weighted case, let us introduce some extra notations.200

For two subsets S1, S2 ⊆ V and a sign σ ∈ {+,−} we define Eσ[S1, S2] =201

{(i, j) ∈ Eσ : i ∈ S1, j ∈ S2, i 6= j}, wσ(S1, S2) =
∑

(i,j)∈Eσ [S1,S2]
wij and202

wσ(S1) = wσ(S1, S1).203

A partition of V is a division of V into non-overlapping and non-empty sub-204

sets. The imbalance I(P ) of a partition P = {S1, S2, . . . , S|P |} is the weighted205

sum of negative arcs inside the subsets and positive arcs between the subsets,206

i.e.,207

I(P ) =
∑

1≤i≤|P |

w−(Si) +
∑

1≤i<j≤|P |

w+(Si, Sj). (1)

As stated by Bansal et al. (2004), CC consists in finding a partition that208

minimizes the imbalance given by (1).209

We introduce a new variant of CC in which a set of vertices called mediators210

is identified while the imbalance (1) of the remaining vertices is minimized.211

Let us define two properties that a set of mediators must satisfy.212

Definition 1 Consider a scalar value α ∈ R+. A subset S ⊆ V is α-feasible if213

αw+(S) ≥ w−(S).214

Definition 2 Consider a scalar value β ∈ R+. A subset S ⊆ V is β−feasible215

if βw+(S, V \S) ≥ w−(S, V \S).216

These definitions provide upper bounds on the sum of negative weights217

inside (Definition 1) and leaving (Definition 2) the set of vertices S. Fixing218

parameter α to 0 (β to 0, resp.) allows only non-negative edges inside (leaving,219

resp.) S. By tuning the values of α and β, we define the degree of negative220

relations accepted, respectively, inside S and leaving S. For example, if α = 2221

the weighted sum of negative relations in S cannot exceed the double of its222

positive relations. These two bounds together lead to the definition of a set of223

mediators.224

Definition 3 A subset S ⊆ V is a set of mediators if S is α−feasible and225

β−feasible.226
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We can now formally define the Correlation Clustering problem under Me-227

diation.228

Correlation Clustering problem under Mediation
Input: A signed graph G = (V,E, s), non-negative arc weights w ∈ R|E|+

and two scalars α, β ∈ R+.
Output: A partition P = {SM , S2, ..., S|P |} which minimizes the imbalance

I(P\SM ) and such that SM is a set of mediators.

229

230

The Correlation Clustering with Positive Mediation (CCPM) problem in-231

troduced in Doreian and Mrvar (2009) and formalized in Figueiredo and Moura232

(2013) is a specific case of CCM in which α = β = 0.233

We now prove that CCM is NP-hard.234

Lemma 1 The CCM problem is NP-hard.235

Proof. We prove this result with a reduction from CC. Consider an instance236

ICC of CC defined over a signed graph G = (V,E, s) with an edge weight237

vector w ∈ R|E|+ . Let G′ = (V ′, E′, s′) be a signed graph and let w′ ∈ R|E
′|

+ be238

an edge weight vector defined as follows (see Figure 1):239

– V ′ = V ∪ {n+ 1, n+ 2, n+ 3}240

– E′ = E ∪ E1 ∪ E2 ∪ E3 with:241

– E1 = {(n+ 1, n+ 3), (n+ 2, n+ 3)},242

– E2 = {(n+ 1, n+ 2)},243

– E3 = {(n+ 2, i) : i ∈ V } ∪ {(n+ 3, i) : i ∈ V }.244

– s′e =

 se, e ∈ E,
+, e ∈ E1,
−, e ∈ E2 ∪ E3.

245

– w′e =

 we, e ∈ E,
M, e ∈ E1 ∪ E2, with M = 1 +

∑
e∈E we,

−3M, e ∈ E3.
246

Consider the instance ICCM of CCM defined over the signed graph G′247

with α = β = 1. Let PCCM be an optimal solution of ICCM . We prove that248

PCCM is necessarily equal to S = {{n + 1}, {n + 2, n + 3}, PCC} where PCC249

is an optimal solution of ICC . We first observe that S is a feasible partition250

for instance ICCM : the unitary set {n + 1} satisfy the conditions of a set of251

mediators for β = 1 and any α ∈ R+. Moreover, the imbalance I({{n+ 2, n+252

3}, PCC}) = I(PCC) is lower than M for any partition PCC of the set of253

vertices V \ {n + 1, n + 2, n + 3}. Next, we argue that the set of mediators254

in an optimal solution of ICCM is necessarily {n + 1}. Vertices n + 1, n + 2255

and n+ 3 define a non-balanced cycle in G′ (i.e., a cycle with an odd number256

of negative edges) composed of edges of weight M . As a consequence at least257

one of them must be in the set of mediators in an optimal solution (otherwise258

the imbalance would be at least M). If vertex n + 2 or n + 3 is in the set259

of mediators, a vertex in V cannot be neither in the set of mediators – as it260

would be α-infeasible – nor outside of the set of mediators – as it would be β-261

infeasible. As a consequence, vertex n+ 1 is necessarily in the set of mediators262
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of an optimal solution. Moreover, no vertex in V can be in the set of mediators263

as it would be β-infeasible.264

We can also conclude that {n+ 2, n+ 3} forms necessarily a cluster in an265

optimal partition. Vertices n + 2 and n + 3 have to be together in a cluster,266

otherwise the imbalance would be greater than or equal to M . Moreover, no267

vertex in V can join this cluster, otherwise it will increase the imbalance of268

6M .269

Finally, since PCC is a partition of V \ {n + 1, n + 2, n + 3} and I({{n +270

2, n+ 3}, PCC}) is equal to I(PCC), we can conclude that PCC is an optimal271

partition for ICC .272

273

1

3

2

4

6

7

5M

−M

M

−3M

−3M

Fig. 1: Example of the reduction from an instance of CC with 4 vertices to an
instance of CCM with 7 vertices.

In the next section, we formulate the CCM Problem as an Integer Linear274

Programming (ILP) model.275

4 Mathematical formulation276

ILP formulations have been successfully used in the literature for the resolu-277

tion of clustering problems (Johnson et al., 1993; Mehrotra and Trick, 1996;278

Hansen and Jaumard, 1997; Agarwal and Kempe, 2008; Brusco and Stein-279

ley, 2009; Ales et al., 2016), including clustering problems defined on signed280

graphs (Figueiredo and Moura, 2013; Aref and Wilson, 2019). In this section,281

we introduce an ILP formulation for the CCM problem.282

For each pair of distinct vertices i, j in V , we consider a binary variable xij283

equal to 1 if and only if i and j do not belong to the same cluster. Also, to each284

vertex i ∈ V is associated a binary variable mi equal to 1 if and only if i is a285

mediator. Note that in this formulation, each mediator vertex is represented286

as an isolated vertex. Finally, each pair of distinct vertices i, j is associated287

with two additional binary variables: tij equal to 1 if and only if both i and j288

are mediators; and zij equal to 1 if and only if at least i or j is a mediator.289
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minimize
∑

(i,j)∈E−
wij(1− xij) +

∑
(i,j)∈E+

wij(xij − zij) (2)

s.t. xjk ≤ xij + xik, i ∈ V j, k ∈ V \{i} j < k, (3)

mi ≤ xij , i, j ∈ V i 6= j, (4)

mi +mj − 1 ≤ tij , i, j ∈ V i 6= j, (5)

tij ≤ mi, i, j ∈ V i 6= j, (6)

mi ≤ zij , i, j ∈ V i 6= j, (7)

zij ≤ mi +mj , i, j ∈ V i 6= j, (8)∑
(i,j)∈E−

wijtij ≤ α
∑

(i,j)∈E+

wijtij , (9)

∑
(i,j)∈E−

wij(zij − tij) ≤ β
∑

(i,j)∈E+

wij(zij − tij), (10)

xij = xji ∈ {0, 1}, i, j ∈ V i 6= j, (11)

zij = zji ∈ [0, 1], i, j ∈ V i 6= j, (12)

tij = tji ∈ [0, 1], i, j ∈ V i 6= j, (13)

mi ∈ {0, 1}, i ∈ V. (14)

The triangle inequalities (3) ensure that if i is in the same cluster as j and290

k (xij = xik = 0), then vertices j and k are also in the same cluster (xjk = 0).291

Constraints (4) establish that mediators are isolated. Constraints (5) and (6)292

ensure that tij = mimj . Constraints (7) and (8) impose, respectively, zij = 1293

whenever mi +mj ≥ 1 and zij = 0 otherwise. Constraints (9) and (10) ensure294

that the set of mediators is α and β-feasible, respectively. Remark that the295

expression zij − tij is equal to 0 if and only if mi = mj . Consequently, for296

σ ∈ {−,+},
∑

(i,j)∈Eσ wij(zij − tij) = wσ({mi}i∈V , V \{mi}i∈V ). Finally, the297

objective function (2) minimizes the imbalance defined by (1). The first term298

penalizes negative edges (i, j) connecting vertices in a same cluster (i.e., such299

that xij = 0) and the second term penalizes positive edges (i, j) connecting300

non-mediator vertices in different clusters (i.e, such that xij = 1 and zij = 0).301

In Section 6 the performance of this formulation is compared with the ones302

of two enumeration algorithms presented in the next section.303

5 Enumeration algorithms304

In this section, we present an alternative to the ILP based branch-and-bound305

algorithm, called enumeration algorithms for the optimal resolution of CCM.306

We first formally define the notion of enumeration algorithm (Section 5.1).307

Then, we study three simple enumeration strategies (called policies) and show308

that only one of them ensures an exact resolution (Section 5.2). Finally, based309
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on this policy, we propose two enumeration algorithms called A1 and A2 (Sec-310

tions 5.3 and 5.4). The first one generates one solution for each possible max-311

imal set of mediators while A2 focuses on returning a single optimal solution312

and efficiently prune branches of the exploration tree.313

5.1 Enumeration tree and branching policy314

Let an enumeration tree of a signed graph G = (V,E, s) be a tree in which:315

– each tree node is associated to a subset of V ;316

– the root corresponds to the empty set;317

– each other node is associated to the set of its parent plus a new vertex.318

Three enumeration trees are depicted in Figure 2.319

(a) An enumeration tree. (b) Lexicographical enumeration tree.

(c) Complete enumeration tree.

Fig. 2: Three enumeration trees for |V | = 3.

An enumeration algorithm for CCM generates an enumeration tree in order320

to identify sets of mediators of G. Solutions of the problem are then obtained321

by evaluating all mediators sets identified. The evaluation of a set SM consists322

in finding the lowest possible imbalance of a solution in which SM is the set323

of mediators. This is obtained by solving the CC problem instance associated324

with the signed graph induced by V \SM .325

Let P(V ) be the power set of V . One of the main components of an enu-326

meration algorithm is its branching policy π : P(V ) × V 7→ {true, false}327

which indicates when a node should be created or not in the enumeration tree.328

More specifically, if S is a subset of V and i is a vertex in V \S then π(S, i)329
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returns true if node S ∪ {i} must be created as a child of node S and false330

otherwise. As a consequence, the size of the tree generated by an algorithm331

directly depends on its policy. If the branching policy always returns true332

(π(S, i) = true , ∀S ∈ P(V ) , ∀i ∈ V \S), a complete tree of O(n!) nodes is333

created (see Figure 2c). Enumerating the sets in lexicographical order corre-334

sponds to the branching policy π(S, i) = “i > argmaxs∈S s” (see example in335

Figure 2b). This policy leads to a smaller tree size by avoiding any repetition336

(i.e., each set is associated to no more than one node). However, the size of337

the corresponding tree (2|V |) remains prohibitive and better alternatives are338

required to efficiently solve CCM.339

5.2 Simple branching policies340

Let < G,α, β > be an instance of CCM defined by a signed graph G =341

(V,E, s) and scalar values α and β. A branching policy π is said to be exact342

for < G,α, β > if the enumeration algorithm using π enumerates all sets of343

mediators in G.344

We first study three branching policies called παβ , πα and πβ and show345

that only πα is exact. Policy παβ is an intuitive branching policy which gen-346

erates a node only if it corresponds to a set of mediators: παβ(S, i) = “S ∪347

{i} is a set of mediators”. Policies πα and πβ are less restrictive and, thus,348

lead to larger enumeration trees:349

– πα(S, i) = “S ∪ {i} is α-feasible”;350

– πβ(S, i) = “S ∪ {i} is β-feasible”.351

To determine the conditions under which each of these three policies are352

exact, we consider the following definition.353

Definition 4 (Björner and Ziegler (1992)) Let F ⊆ P(S) be a family of354

subsets of a set S. The tuple (S,F) is an accessible system if and only if:355

(i) ∅ ∈ F ,356

(ii) if X ∈ F and X 6= ∅ then ∃ x ∈ X such that X\{x} ∈ F .357

Let M be the family of all sets of mediators of the signed graph G =358

(V,E, s). Similarly, let A and B be the family of all α-feasible and β-feasible359

sets of G, respectively. The three following lemmas prove that branching poli-360

cies παβ , πα and πβ are exact when (V,M), (V,A) and (V,B) are accessible361

systems.362

Lemma 2 παβ is exact for < G,α, β > if and only if (V,M) is an accessible363

system.364

Proof. Let S be any set of mediators in G. If (V,M) is an accessible sys-365

tem, there exists an ordering (s1, s2, ..., s|S|) of the vertices in S such that366

S\{s1, s2, ..., si} is a set of mediators for all i ∈ {1, 2, ..., |S|}. As a conse-367

quence, S can be reached by παβ through the following branch: ∅, {s|S|},368

{s|S|, s|S|−1}, ..., S.369
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We now prove that if παβ is exact for < G,α, β > , then (V,M) is an370

accessible system. We use the contrapositive of this proposition, i.e. we assume371

(V,M) is not an accessible system and we will see that there exists a set of372

mediators S which is not enumerated by παβ . Indeed, if (V,M) is not an373

accessible system, that means there exists a set of mediators S such that374

S \ {s} is not a set of mediators for each s ∈ S. Hence, by the definition of375

παβ , no set S \ {s} will be enumerated by the branching policy παβ . Since the376

set S can only be generated from a set of the form S \ {s}, we can conclude377

that S will not be reached by παβ .378

379

The two following lemmas provide weaker results for (V,A) and (V,B)380

which give sufficient conditions under which πα and πβ are exact. The proof of381

these lemmas are omitted since they are similar to the first part of the proof382

of Lemma 2.383

Lemma 3 If (V,A) is an accessible system, then πα is exact for < G,α, β >.384

385

Lemma 4 If (V,B) is an accessible system, then πβ is exact for < G,α, β >.386

387

As we will prove in Lemma 10, (V,A) is always an accessible system which388

ensures that πα is always exact. Lemma 11 will prove that the same does not389

apply to πβ .390

Note that, as defined next, a matroid is a special case of an accessible391

system.392

Definition 5 (Whitney (1935)) Let F ⊆ P(S) be a family of subsets of a393

finite set S. The tuple (S,F) is a matroid if it satisfies the three following394

axioms:395

(i) ∅ ∈ F ;396

(ii) Hereditary axiom: if X ∈ F , then for all Y ⊆ X, Y ∈ F ;397

(iii) Augmentation axiom: if I, J ∈ F and |I| = |J |+1, then there exists x ∈ I\J398

such that J ∪ {x} ∈ F .399

We characterize in the remaining of this section when (V,M), (V,A) and400

(V,B) are accessible systems or even matroids. These results are summarized401

in Table 1.402

Unfortunately, παβ , which may provide smaller enumeration trees than πα403

and πβ , is not exact in the general case.404

Lemma 5 If α 6= 0, then (V,M) is not necessarily an accessible system.405

Proof. In the graph represented in Figure 3, {a, b, c} is a set of mediators but406

none of the subsets {a, b}, {a, c} and {b, c} is.407
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Tuple
α > 0 α = 0 α = 0

β > 0 β > 0 β = 0

(V,M) × (Lemma 5) Accessible (Lemma 8) Matroid (Lemma 9)

(V,A) Accessible (Lemma 10)

(V,B) × (Lemma 11)

Table 1: Properties satisfied by (V,M), (V,A) and (V,B). The symbol ’×’ is
used when the corresponding tuple is not an accessible system for all graphs.

−1 −1

2
α

1

a

c

b

d

(a) A signed graph for which {a, b, c}
is a set of mediators.

Set α-feasible? β-feasible?

{a, b, c}
yes yes

2 ≤ 2
α
α 0 ≤ β

{a, b}
yes no

0 ≤ 2
α
α 2 > 0β

{a, c} or {b, c}
no if β≥ α

1 > 0α 1 ≤ ( 2
α

+ 1)β

(b) Table which shows that for each i ∈ {a, b, c},
{a, b, c} \ {i} is not a set of mediators.

Fig. 3: Example which shows that (V,M) is not an accessible system when
α 6= 0.

Consequently, whenever α 6= 0, an enumeration algorithm based on παβ408

may not reach all the sets of mediators. The next lemma shows that this could409

even lead to sub-optimal solutions of the CCM problem.410

Lemma 6 Policy παβ may not enumerate any of the sets of mediators leading411

to an optimal imbalance.412

Proof. Let G = (V,E, s) be the signed graph represented in Figure 4 and let413

α = β = 1. We can easily verify that for all v ∈ {c, d, e, f, g, h} the following414

sets are not sets of mediators: {a, b}, {v}, {a, v}, and {b, v}. Consequently,415

the enumeration tree has only three nodes: ∅, {a} and {b}. These three ver-416

tices can only provide solutions with an imbalance greater than 1 due to417

the non-balanced cycle {d, e, f} in the graph. However, the mediators set418

S = {a, b, c, d}, which is not reached by the tree, leads to an optimal solution419

of cost 0 since the partition {S, {e, f}, {g}, {h}} is balanced.420

421

To prove that παβ is exact when α = 0, we first consider the following422

lemma.423

Lemma 7 Assume that α 6 β. If S is a set of mediators, then there exists a424

vertex s ∈ S such that S \ {s} is β-feasible.425
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a b

c

d

e f h

g

−1

2

−0.5

0.5

−1

−0.5

0.5

1

1 −2

1

−5

−5

Fig. 4: A signed graph G where (V,M) is not an accessible system. Branching
policy παβ applied to < G, 1, 1 > does not enumerate any set of mediators
associated with an optimal solution of < G, 1, 1 >.

Proof. Let us assume that for each s ∈ S, S \ {s} is not β-feasible. Hence, the426

following inequality holds for all s ∈ S427

βw+(S \ {s}, V \ {S \ {s}}) < w−(S \ {s}, V \ {S \ {s}})

equivalently428

βw+(S \ {s}, V \ S) + βw+(s, S) < w−(S \ {s}, V \ S) + w−(s, S).

By summing up this inequality for each s ∈ S we obtain429

(|S|−1)βw+(S, V \S)+β
∑
s∈S

w+(s, S)︸ ︷︷ ︸
=2w+(S)

< (|S|−1)w−(S, V \S)+
∑
s∈S

w−(s, S).︸ ︷︷ ︸
=2w−(S)

Since S is a set of mediators, it is β-feasible. Consequently, (|S|−1)βw+(S, V \430

S) > (|S| − 1)w−(S, V \ S), which together with the previous inequality leads431

to432

βw+(S) < w−(S).

Assuming α 6 β, this last inequality contradicts the α-feasibility of S.433

We now prove that (V,M) is an accessible system when α = 0.434

Lemma 8 If α = 0, then (V,M) is an accessible system.435

Proof. If α = 0, the weight of each edge in a set of mediators SM is non-436

negative. Hence, any subset of SM is α-feasible. We deduce from Lemma 7437

that there exists at least one vertex s ∈ SM such that SM \ {s} is additionally438

β-feasible.439



Correlation Clustering Problem under Mediation 15

Note, that when α = β = 0, (V,M) is not only an accessible system but440

also a matroid.441

Lemma 9 If α = β = 0, then (V,M) is a matroid.442

Proof. Since α = β = 0 the weight of each edge in SM and between SM and443

V \SM is necessarily non-negative. This also applies to any subset of SM and444

implies hereditary and augmentation axioms of a matroid.445

Lemma 9 ensures that, when both α and β are null, παβ is exact. However,446

in this case, an enumeration algorithm based on this policy is not the best447

approach to solve CCM. Indeed, when α = β = 0, an optimal solution of448

CCM can be obtained by identifying the unique maximal set of mediators SM449

and solving CC on the remaining vertices V \ SM (Figueiredo and Moura,450

2013). Such a set SM can easily be identified as it contains all the vertices451

with adjacent edges with only non-negative weights.452

Since παβ is not exact for all signed graphs, we now focus on πα and πβ .453

The two next lemmas show that only πα is exact.454

Lemma 10 For any α ≥ 0, (V,A) is an accessible system.455

Proof. Consider a α-feasible set S. Let us assume that, for each vertex s ∈456

S, S \ {s} is not α-feasible:457

αw+ (S \ {s}) < w− (S \ {s}) ∀s ∈ S. (15)

Summing up these inequalities for each s ∈ S, we obtain458

(|S| − 2)αw+(S) < (|S| − 2)w−(S), (16)

since each edge (i, j), with i, j ∈ S, appears in each inequality (15) except459

when s is equal to i or j.460

Equation (16) contradicts the α-feasibility of S.461

Lemma 11 For any β > 0, (V,B) is not necessarily an accessible system.462

Proof. Consider a graph composed of two vertices linked by an edge of weight463

−1. The set {s, t} is β-feasible while {s} and {t} are not.464

465

As summarized in Table 1, πβ and παβ are not exact in most of the cases466

and can, thus, lead to non-optimal solutions. Consequently, we base our two467

enumeration algorithms A1 and A2 on πα.468
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(a) First two stages of the tree obtained with πα.

(b) Tree obtained with πA1
.

Fig. 5: Enumeration trees obtained for different policies for the graph presented
in Figure 3a.

5.3 Algorithm A1469

In this section, we present our first enumeration algorithm A1 for CCM and470

its branching policy πA1
.471

The two time consuming steps of an enumeration algorithm for CCM are472

the enumeration and the subsequent evaluation of the identified sets of me-473

diators. We introduce in Section 5.3.1 an exact branching policy πA1
which474

is a variation of πα producing significantly smaller trees. Moreover, to speed475

up the evaluation step, we prove in Section 5.3.2 that only maximal sets of476

mediators need to be evaluated.477

5.3.1 Branching policy πA1478

Lemmas (5) to (11) prove that πα is exact while πβ and παβ are not. Un-479

fortunately, the enumeration tree generated by πα may be huge (even larger480

than the lexicographical order policy) since πα does not avoid repetitions (i.e.,481

several nodes of the generated tree may correspond to the same set). This is482

illustrated by the enumeration tree in Figure 5a in which all α-feasible sets of483

size 2 are represented.484

It would be tempting to combine πα with the lexicographical policy and485

only enumerate in lexicographical order the sets which are α-feasible. However,486

this policy would not be exact. Indeed, in Figure 2b, if the set {1, 2} is not487

α-feasible, then the set {1, 2, 3} can not be generated.488

The following lemma enables to design an exact branching policy without489

node repetitions.490

Lemma 12 If S ⊂ V is α-feasible and v ∈ argmini∈S αw+(i, S)− w−(i, S),491

then S\{v} is α-feasible.492



Correlation Clustering Problem under Mediation 17

Proof. Lemma 10 ensures that there exists k ∈ S such that S\{k} is α-feasible:493

494

αw+(S)− w−(S)− (αw+(k, S)− w−(k, S)) ≥ 0. (17)

Let us assume that there exists a vertex v ∈ argmini∈S αw+(i, S) −495

w−(i, S) such that set S\{v} is not α-feasible:496

αw+(S)− w−(S)− (αw+(v, S)− w−(v, S)) < 0. (18)

However, from Equations (17) and (18) we arrive to497

αw+(k, S)− w−(k, S) < αw+(v, S)− w−(v, S) (19)

which contradicts the definition of v.498

499

Let S be an α-feasible set. Lemma 12 ensures that by successively removing500

from S a vertex which minimizes αw+(i, S)−w−(i, S) (i.e., a vertex of S which501

contribution to the α-feasibility of S is minimal), a serie of α-feasible sets is502

obtained. In other words, S can be reached by a branching policy which uses503

this condition.504

We describe next the exact branching policy of the enumeration algorithm505

A1. Branching policy πA1
(S, i) returns true if and only if:506

– S′ = S ∪ {i} is α-feasible; and507

– i = min argmins∈S′ (αw+(s, S′)− w−(s, S′)).508

A minimization is used in the second condition to avoid repetitions in the509

enumeration tree whenever several vertices in S have a minimal contribution510

to the α-feasibility of S.511

We now present how the evaluation step of an enumeration algorithm can512

be improved.513

5.3.2 Evaluation of the generated sets of mediators514

In order to solve the CCM problem, an enumeration algorithm must evalu-515

ate the sets of mediators it generates. The evaluation of a set of mediators516

SM consists in solving the CC problem on the graph in which vertices SM517

are removed. This step can be performed after the enumeration of all sets of518

mediators or in parallel, i.e., simultaneously with the enumeration process.519

Since CC is NP -hard, reducing the number of evaluated sets can have a520

significant impact on the resolution time of an enumeration algorithm. The521

next lemma ensures that we can only evaluate maximal sets of mediators. For522

a given set S ⊆ V , let PS be an optimal partition of the CC problem defined523

over V \S.524

Lemma 13 Let S be a set of mediators and s a vertex in V \S. We have that525

I(PS) ≥ I(PS∪{s}).526
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Proof. Let PS = {S1, ..., Sk} and assume without loss of generality that s ∈527

S1. According to Equation (1),528

I({S1 \ {s}, . . . , Sk}) = I(PS) − w−({s}, S1) −
∑

2≤j≤k

w+({s}, Sj). (20)

We can then conclude that529

I(PS) ≥ I({S1 \ {s}, . . . , Sk}) ≥ I(PS∪{s}). (21)

530

Lemma 13 implies that adding a vertex to the set of mediators can not531

deteriorate the optimal value of CCM.532

Corollary 1 Let S, S′ ⊆ V be two sets of mediators in G such that S ⊆ S′.533

Then I(PS) ≥ I(PS
′
).534

Consequently, we only test maximal sets of mediators in our algorithms.535

5.3.3 Pseudo-code of Algorithm A1536

To solve CCM, Algorithm A1 generates all the maximal sets of mediators by537

calling the recursive function A1Enumeration(G, ∅) (see Algorithm 1). It then538

returns a single set of mediators which minimizes the imbalance. Lines 2 and539

3 of function A1Enumeration enable to generate all the child nodes of node540

S which satisfy branching policy πA1
. The sets of mediators are evaluated on541

Line 6 if no set of mediators is found in the subtree (i.e., if L = ∅). Note that542

this does not prevent A1 from evaluating non maximal sets of mediators.543

Algorithm 1: Recursive function A1Enumeration.

Data: G = (V,E, s), a weighted signed undirected graph
S ⊂ V , a subset of vertices

Result: L, a list of sets of mediators {S1, ..., SN} which include S and
{I(PS1), ..., I(PSN )}

1 L← ∅
2 for i ∈ V \S do
3 if πA1

(S, i) then
4 L← L ∪A1Enumeration(G,S ∪ {i})

5 if L = ∅ and S is β-feasible then
6 L← {(S, I(PS)}
7 return L

544

Lemma 14 Algorithm A1 may evaluate non maximal sets of mediators.545
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a b
1

(a)

(b)

Fig. 6: (a) A graph and (b) its corresponding enumeration tree obtained with
Algorithm A1.

Proof. Figure 6b represents the enumeration tree obtained using policy πA1
546

over the graph in Figure 6a.547

Since {b} is a mediators set and a leaf of the tree, it will necessarily be548

evaluated during Algorithm A1. However, it is not a maximal mediator set as549

it is included in {a, b}.550

AlgorithmA1 enumerates exhaustively the maximal sets of mediators which551

could be particularly relevant in the context of decision aid applications, where552

alternative solutions are preferable (Arinik et al., 2021). We now define a sec-553

ond exact enumeration algorithm called A2 which only returns a single optimal554

solution but which leverage linear relaxations to significantly reduce the size555

of its enumeration tree.556

5.4 Algorithm A2557

Algorithm A2 is based on the recursive function A2Enumeration, represented558

in Algorithm 2, which enables to reduce the size of the enumeration tree com-559

pared to A1Enumeration. This function takes as an input an upper bound560

UB which corresponds to the imbalance of a known feasible solution of the561

CCM problem. At each node S, it computes the value vr of the linear relax-562

ation of CCM in which the vertices in S are imposed to be included in the set563

of mediators (Line 2). If vr is greater than UB, this sub-tree can not lead to564
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a better solution and it is pruned. Finally, UB is updated whenever a better565

integer solution is obtained (Line 10).566

Algorithm 2: Recursive function A2Enumeration

Data: G = (V,E, s), a weighted signed undirected graph
S ⊂ V , a subset of vertices
UB, the best known upper bound of CCM (global variable)

Result: L, a list of sets of mediators {S1, ..., SN} which include S and
{I(PS1), ..., I(PSN )}

1 L← ∅
2 vr ← optimal value of the linear relaxation of the CCM problem in

which S is forced to be included in the set of mediators
3 if vr < UB then
4 for i ∈ V \S do
5 if πA1(S, i) then
6 L← L ∪A2Enumeration(G,S ∪ {i})

7 if L = ∅ and S is β-feasible then
8 v∗ ← I(PV \S)
9 L← {(S, v∗)}

10 UB = min(UB, v∗)

11 return L

567

To provide an initial upper bound, we use the greedy heuristic described568

in Algorithm 3. This heuristic tries to find a list of sets of mediators L such569

that each vertex in V appears in at least one of them. For this purpose the list570

notInASet initially contains all the vertices (Line 2) and each time a vertex is571

added to a mediator set, it is removed from this list (Line 6 and 10). Each pass572

of the while loop Line 3 tries to create a set of mediators SM starting with573

a candidate vertex from notInASet (Line 4 and 5). Vertices are then added574

to SM by successively selecting vertices which improve the most the α and575

the β-feasibilities of SM (Line 7 and 11). Prior to adding SM to L, we test if576

SM is a set of mediators (Line 12). Note that if the candidate vertex is not577

included in any set of mediators of size 2, SM can not be a set of mediators.578
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In that case, the greedy algorithm may not return any set of mediators which579

includes this vertex.580

Algorithm 3: Greedy heuristic for the CCM problem HG.

Data: G = (V,E, s), a weighted signed undirected graph
Result: L, a list of sets of mediators

1 L← ∅
2 notInASet← V // List of vertices which does not appear in any set of

mediators found
3 while notInASet 6= ∅ do
4 candidate← notInASet[1]
5 SM ← {candidate}
6 notInASet← notInASet\{candidate}

7
v ← argmaxi∈V \SM min(αw+(i, SM )− w−(i, SM ),

βw+(i, V \SM )− w−(i, V \SM ))

8 while SM ∪ {v} is a set of mediators do
9 SM ← SM ∪ {v}

10 notInASet← notInASet\{v}

11
v ← argmaxi∈V \SM min(αw+(i, SM )− w−(i, SM ),

βw+(i, V \SM )− w−(i, V \SM ))

12 if SM is a set of mediators then
13 L← L ∪ SM

14 return L

581

Algorithm A2 starts by calling the greedy heuristic. Each maximal set of582

mediators returned is then evaluated and the best imbalance obtained consti-583

tutes the initial upper bound UB. The exact enumeration is then performed584

by calling A2Enumeration(G, ∅, UB).585

5.5 Implementation improvements586

To improve the efficiency of A1 and A2, several implementation choices have587

been made.588

At each node, the α and the β-feasibility are not computed from scratch.589

They are instead deduced from the values obtained at the parent node. For590

example, let us consider a node S ∪ {i} son of node S. At node S ∪ {i}, the591

α-feasibility of node S has already been tested. The value αw+(S) − w−(S)592

is thus known. We leverage this value to test the α-feasibility of node S ∪ {i}593

thanks to the equation:594

αw+(S∪{i})−w−(S∪{i}) = αw+(S)−w−(S)+αw+(i, S)−w−(i, S). (22)

Consequently, at each node S ∪ {i}, we only compute the value αw+(i, S) −595

w−(i, S). A similar reasoning is considered for the β-feasibility tests.596

Enumeration algorithms must both enumerate and evaluate sets of medi-597

ators. The evaluation of a set S requires to solve a NP -hard problem and we598
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know that it is not necessary if S is not a maximal set of mediators. Conse-599

quently, it is not efficient to evaluate a set as soon as it is enumerated. An600

alternative would be to first enumerate all the sets of mediators and then601

evaluate the ones which are maximal. This approach has two drawbacks:602

– when the resolution time is limited, enumerating all the sets of mediators603

may not leave enough time to evaluate all the sets of mediators, leading to604

a solution of poor quality. In hard instances it can even lead to no solution605

at all;606

– in A2 evaluating sets of mediators may enable to improve the upper bound607

UB, thus reducing the size of the enumeration tree. If the sets of mediators608

are evaluated after the enumeration, this bound can not be strengthened609

during the enumeration.610

Consequently, our algorithms alternate between the enumeration and the611

evaluation steps until the algorithm or the time is over. More precisely, the612

first evaluation step starts when a quarter of the time limit has elapsed. At613

the end of an evaluation step, the remaining time is computed and the next614

evaluation step will occur when a quarter of that time has elapsed.615

6 Computational experiments616

We compare the performances of A1, A2 and the formulation presented in617

Section 4: in Section 6.1, on two datasets composed of random instances; in618

Section 6.2, on instances obtained from the vote of the members of the Euro-619

pean parliament (Arinik et al., 2020) 1. We use a 3.60GHz Intel(R) Xeon(R)620

Gold 6244 equipped with 384GByte of RAM. The linear programs are solved621

with CPLEX 12.10 and all algorithms are implemented in Julia v1.8.2.622

For each instance I considered, let ᾱI =

∑
(i,j)∈E− wij∑
(i,j)∈E+ wij

. The solution in623

which V is a set of mediators is always optimal since it leads to an imbalance624

of 0. Consequently, the problem is trivial for any value α ≥ ᾱI and ᾱI is the625

lowest value for which V is a set of mediators. To evaluate our methods over626

non-trivial problems, we consider for each instance I the three following values627

of α: 0.25 ᾱI , 0.5 ᾱI and 0.75 ᾱI .628

6.1 Random dataset629

We randomly generate instances with 30 to 50 vertices and with densities630

ρ ∈ {0.2, 0.5, 0.8} by using the erdos.renyi.game function from R’s “igraph”631

library (see (Csardi and Nepusz, 2006)). The density ρ ∈ [0, 1] corresponds632

to the probability that an edge exists. The weight and sign of the edges are633

defined by uniformly generating values in [−1, 1].634

1 the data are available at
https://osf.io/nrmec/?view_only=041e08fbaa8444eba4473f5c105f7ca4

https://osf.io/nrmec/?view_only=041e08fbaa8444eba4473f5c105f7ca4
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6.1.1 Generating all maximal sets of mediators635

Lemma 13 states that for any set S′ ⊂ S, I(PS
′
) ≥ I(PS). Consequently,636

the maximal sets of mediators constitute particularly interesting solutions on637

which we focus in Algorithms A1 and A2.638

In a decision aid process based on the CCM problem, generating a single639

solution, i.e. a single set of mediators, may not be suitable. For example,640

in the instances of the European parliament considered in Section 6.2, a set641

of mediators is used to constitute a commission on a given topic. However, in642

this context, a solution may be impractical due to additional constraints which643

could be related to the availability of the deputies constituting the set or the644

parity constraints between the countries represented. Consequently, the fact645

that Algorithm A1 exhaustively generates all maximal sets of mediators and646

could leads to several diverse optimal solutions can be a significant advantage.647

Solving our CCM formulation with CPLEX does not directly enable to648

generate all the maximal sets as it only returns one optimal solution of the649

problem at a time. To overcome this problem, we could use the method pro-650

posed in (Danna et al., 2007) (included in CPLEX) to generate all the optimal651

solutions of an ILP formulation in a single branch-and-bound tree. However,652

this approach is likely to enumerate non-relevant solutions. Indeed, two dif-653

ferent optimal solutions of CCM problem can be associated to a same set of654

mediators. Moreover, non-maximal set of mediators can also lead to optimal655

solutions.656

Consequently, we implemented an alternative method in which CPLEX is657

executed iteratively. Let S = {S1, ..., Si} be the sets of mediators obtained at658

the i first iterations. To ensure that the set obtained at iteration i + 1 is not659

included in S, we add the following constraints to the model660

∑
i 6∈S

mi ≥ 1 ∀S ∈ S. (23)

For each set S, Constraints (23) ensure that all sets of mediators subse-661

quently generated contain at least one vertex in V \S. The iterative process662

stops once no solution is returned by CPLEX. Eventually, the sets of S which663

are not maximal are removed from it.664

We now compare this iterative process with A1. Table 2 presents the so-665

lution time and the number of maximal sets of mediators generated by each666

approach. The two first columns of Table 2 represent the size and density of667

the graphs. The next column contains the percentage of ᾱI considered. Each668

value corresponds to an average over the five random instances generated. A1669

appears to be significantly better at this task as in 24 cases over 27 it either670

returns more maximal sets of mediators or the same number but in less time.671

Note that, unlike A1, CPLEX is not able to return any solution for the largest672

instances.673
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|V | ρ αI%
CPLEX A1

Time # sets Time # sets

30 0.2

0.25 924s 33 39s 33

0.5 TL 317 323s 2677

0.75 TL 1641 2663s 39649

30 0.5

0.25 33s 1 20s 1

0.5 3440s 31 97s 44

0.75 TL 33 921s 11708

30 0.8

0.25 69s 1 66s 1

0.5 534s 3 82s 3

0.75 TL 10 793s 3727

40 0.2

0.25 600s 7 5932s 7

0.5 TL 60 TL 1701

0.75 TL 1231 TL 73824

40 0.5

0.25 2634s 1 1967s 1

0.5 TL 2 TL 45

0.75 TL 4 TL 28505

40 0.8

0.25 5921s 1 6613s 1

0.5 TL 0 TL 3

0.75 TL 0 TL 4496

50 0.2

0.25 4870s 7 TL 7

0.5 TL 5 TL 1768

0.75 TL 861 TL 210302

50 0.5

0.25 TL 0 TL 1

0.5 TL 0 TL 1

0.75 TL 0 TL 14568

50 0.8

0.25 TL 0 TL 1

0.5 TL 0 TL 1

0.75 TL 0 TL 1087

Table 2: Mean time and number of maximal sets of mediators found for CPLEX
and A1 over the random graphs. Each value is an average over the five in-
stances. On each line, the best result is in bold. TL indicates that the time
limit of 7200s has been reached in all five instances.

6.1.2 Generating a single optimal solution674

We now focus on generating a single optimal solution. In this context CPLEX675

does not solve our MIP formulation iteratively anymore but just once. Fur-676

thermore, Algorithm A2, which returns an optimal solution and may prune677

branches leading to maximal sets of mediators, is now considered.678

For a given instance, let xI be the value of the best solution returned by a679

method and let xLB be the lower bound it provides. We define the relative gap680

as 100 × |x
I−xLB |
xI

. Since A1 and A2 do not provide a lower bound, the lower681

bound obtained with CPLEX is used to compute their relative gap.682
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|V | ρ ᾱI%
A1 A2 CPLEX

Time Gap Nodes Time Gap Nodes Time Gap Nodes

30 0.2

0.25 39s 0% 1.3×107 90s 0% 9313 6s 0% 93

0.5 323s 0% 8.8×107 2701s 0% 3.4×105 5s 0% 70

0.75 2663s 1% 2.7×108 720s 0% 1.1×105 3s 0% 16

30 0.5

0.25 20s 0% 9.1×105 10s 0% 47 22s 0% 37

0.5 97s 0% 2.0×107 294s 0% 9045 65s 0% 458

0.75 921s 0% 1.4×108 TL 2% 3.3×105 66s 0% 1075

30 0.8

0.25 66s 0% 1.4×105 46s 0% 31 63s 0% 202

0.5 82s 0% 5.9×106 75s 0% 343 185s 0% 1542

0.75 793s 0% 1.2×108 TL 7% 1.8×105 618s 0% 6724

40 0.2

0.25 5932s 3% 1.3×109 31s 0% 659 55s 0% 43

0.5 TL 2% 1.3×109 6666s 2% 3.5×105 110s 0% 831

0.75 TL 1% 3.4×108 2880s 0% 1.4×105 5s 0% 4

40 0.5

0.25 1967s 0% 3.2×107 666s 0% 46 2478s 0% 4522

0.5 TL 31% 1.1×109 1807s 0% 22220 3305s 0% 8778

0.75 TL 6% 7.7×108 TL 6% 1.9×105 2739s 0% 15250

40 0.8

0.25 6613s 0% 2.3×106 2889s 0% 33 5874s 0% 8552

0.5 TL 89% 3.5×108 5598s 53% 145 TL - 56745

0.75 TL 22% 1.1×109 TL 23% 46489 TL - 31980

50 0.2

0.25 TL 19% 1.5×109 261s 0% 4650 373s 0% 272

0.5 TL 9% 1.3×108 TL 5% 3.9×105 1037s 0% 2866

0.75 TL 1% 4.4×108 4320s 1% 2.6×105 6s 0% 20

50 0.5

0.25 TL - 4.1×108 TL - 0 TL - 3114

0.5 TL - 8.1×108 TL 62% 8063 TL - 5431

0.75 TL 26% 4.5×108 TL 14% 56615 TL - 20718

50 0.8

0.25 TL 0% 3.6×107 TL - 0 TL - 2687

0.5 TL - 1.1×109 TL - 0 TL - 3164

0.75 TL 59% 3.8×108 TL 44% 24947 TL - 6810

Table 3: Mean time in seconds, relative gap and number of enumerated nodes
obtained for each method over the random graphs. Each value is an average
over five instances. On each line, the best result is in bold. A dash in a Gap
column indicates that no solution is obtained for at least one of the instances.
TL indicates that the time limit of 7200s has been reached in all five instances.

The execution time, the number of nodes generated and the relative gap683

of each method are presented in Table 3. Each entry of this table corresponds684

to a mean value over 5 instances. The time limit of each method is fixed to 2685

hours.686

687

The resolution of our formulation through CPLEX appears to provide the688

best results on most of the instances. Algorithm A2 is often close to CPLEX689

and is even able to beat it in 10 cases over 27. CPLEX is known for the690

efficiency of its presolve algorithm which often enables to drastically reduce691
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the size of a MILP and its fine-tuned heuristics which determine in particular692

on which variable to branch and which node to evaluate next. We posit that693

the efficiency of CPLEX over A1 and A2 is mainly due to these features which694

enable to optimally solve the problems with a significantly smaller number of695

nodes.696

The differences in terms of resolution time and size of the enumerated trees697

between A1 and A2 highlight the efficiency of A2 pruning mechanism.698

We observe that the resolution times tend to increase with size of the699

graph, its density and ᾱI . This is not surprising as all these parameters are700

related to the complexity of the problem. The size of the graph determines701

the number of variables in the formulation and the number of branches to702

consider in the enumeration algorithms. The greater the density, the more703

complex the objective function. Finally, ᾱI directly impacts the number of704

feasible solutions.705

Most of the instances where A2 beats CPLEX correspond to 0.25ᾱI . This706

is due to the fact that the size of the maximal sets of mediators decreases707

when α decreases, thus reducing the depth of the branches of the enumeration708

algorithms.709

6.2 European parliament dataset710

We now consider real world instances obtained by Arinik et al. (2017) from711

votes casted during the 7th term of the european parliament from 2009 to712

2014. The roll-call votes of all members of the european parliament (MEP)713

for all plenary sessions in this period are available on the website It’s Your714

Parliament (Buhl & Rasmussen (2020)).715

In order to obtain challenging instances, we selected countries with more716

than 30 MEP and three of the most controversial policy domains: agriculture,717

gender equality and economic. For each country, one graph is generated for718

each domain. As described by Arinik et al. (2017), each MEP is associated to719

a vertex while the sign and weight of an edge represent the voting similarity720

between two MEPs.721

The results obtained for this dataset are presented in Table 4. Each value722

in this table corresponds to an average over three instances (one for each policy723

domain considered). The table contains the values of the objective function724

instead of the gaps since CPLEX either returns the optimal solution or no725

solution at all which means that its gap is either 0% or not defined. The res-726

olution time of CPLEX quickly increases with the size of the graphs and it is727

only able to provide feasible solutions for the three smallest instances. Algo-728

rithm A2, however, is faster than CPLEX and always returns a solution. The729

efficiency of A2 is partially due to its greedy heuristic which is very efficient on730

these real world instances. Indeed, it often returns a solution with no imbal-731

ance leading to an enumeration tree with only one node. This is not surprising732

as the instances are quite polarized along the lines of the political groups of733

the european parliament. However, the efficiency of A2 is not only due to its734
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n Country ᾱI%
CPLEX A2

Time Obj. Nodes Time Obj. Nodes

33 Romania

0.25 10s 0 53 0s 0 1

0.5 7s 0 172 0s 0 1

0.75 7s 0 172 0s 0 1

51 Poland

0.25 391s 0 30 0s 0 1

0.5 1116s 0 658 0s 0 1

0.75 149s 0 15 0s 0 1

59 Spain

0.25 2390s 0 669 0s 0 1

0.5 2015s 0 76 0s 0 1

0.75 614s 0 11 0s 0 1

72 UK

0.25 9977s - 2 9601s 1 29388

0.5 11006s - 189 9601s 1 31937

0.75 TL - 440 4803s 0 9827

87 France

0.25 TL - 5 9601s 4 16682

0.5 TL - 29 4803s 2 6610

0.75 TL - 19 6s 0 1

104 Germany

0.25 TL - 2 9601s 0 10215

0.5 TL - 2 7s 0 1

0.75 TL - 2 17s 0 1

Table 4: Mean time in seconds, objective value and number of enumerated
nodes obtained on the instances from the european parliament. Each value is
an average over three instances. On each line, the best result is in bold and a
dash is used in column Obj. if no solution is obtained for at least one of the
instances. TL indicates that the time limit of 14400s has been reached in all
three instances.

greedy heuristic as the enumeration algorithm enables to improve the greedy735

solution in most instances with several nodes.736

We conclude this section by highlighting advantages of the enumeration737

algorithms over the integer programming formulation when solving the CCM738

problem. First, A1 generates all the maximal sets of mediators. As mentioned739

before, in the context of decision aid systems, providing a variety of relevant740

solutions for the CCM problem is essential. As seen in Section 6.1.2, CPLEX741

would be significantly less efficient at this task. It can be tuned to generate a742

pool of solutions but it can not guarantee that all the maximal sets of media-743

tors or even all the optimal solutions are obtained. Secondly, the enumeration744

algorithms can easily be adapted to new definitions of sets of mediators involv-745

ing non-linear and non-convex constraints. The satisfaction of these constraints746

can be tested at the same time than the β-feasibility (Line 5 of Algorithm 1747

and Line 7 of Algorithm 2).748
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7 Conclusions and perspectives749

In this paper, we propose a new variant of the correlation clustering problem,750

called the correlation clustering problem with mediation, based on the work751

of Doreian and Mrvar (2009). After proving its NP-hardness we model it with752

an integer mathematical formulation. We also develop two enumeration algo-753

rithms A1 and A2 to solve optimally this problem and exhaustively enumerate754

all the maximal sets of mediators. These algorithms are based on properties755

of the sets of mediators which enable to efficiently prune branches of the enu-756

meration tree. Finally, we compare experimentally the performances of the757

formulation and of the enumeration algorithms on a dataset with random in-758

stances and on a second with real world instances obtained from european759

parliament votes. The resolution of the formulation with CPLEX gives better760

results on hard random instances but, unlike A2 it fails to provide feasible761

solutions on the real instances considered.762

A natural perspective to this work would be to improve the pruning tech-763

nique of the enumeration algorithms by identifying additional properties of the764

sets of mediators to strengthen the branching policies. A new type of enumer-765

ation algorithm could also be introduced in which vertices are removed rather766

than added at each new node of the enumeration tree. Such algorithm could767

cut a branch as soon as a set of mediators is reached. This approach could768

be particularly efficient when the maximal sets of mediators are large (i.e.,769

for large values of parameters α and β). The present work contributes to the770

formalization of mediation in structural balance theory, introduced by Doreian771

and Mrvar (2009). A last perspective would be to consider alternative defini-772

tions of a set of mediators. The flexibility of the enumeration algorithms could773

allow the use of non-linear constraints. For some applications it could also774

be relevant to associate a label to each vertex (e.g., a political party) and to775

require that the proportion of each label in a set of mediators is representative776

of its distribution in the graph.777
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