Selecting surface treatments: « ready-made strategies ».

Examples for the power industry.

European Days, Strasbourg, 19-20 March 2009

<u>Pierre J.D. D'Ans*</u>, André Bertrand*, François Barthélemy**, Jean-Marie-Jacquet**, Marc Degrez*

* ULB – Ecole Polytechnique (Bruxelles)

**Facultés Universitaires N-D de la Paix (Namur)

Introduction

Selecting materials and processes:

- Experts
- Databases
- Performance indices: CES software

Selecting surface treatments:

- Different natures: structural modifications, diffusion layers, conversion layers, coatings
- Lack of representative numerical data (ex. wear)
- □ Surface treatments « triangle »:
- **Use of multiple treatments**

Introduction

Surface treatments: need for specific tools:

- Pedagogical use
- Design assistance
- Combining treatments: need of further developments

Components of these systems:

- Database
- □ Calculator
- Expert system

« Map » of this paper:

- Reviewing existing approaches
- Proposing a new expert system allowing to « stack » treatments: EXPESURF
- Discussion

ULB Short review: 1. optical multilayers

Principle:

Combining multiple coatings allows to filter given wavelenghts

Very specific

Short review: 2. tribology

Use of « rules of thumb »:

- □ Maximising « H/E »
- Miscibility data
- Contact models for coated materials (ex. Leroy and Villechaise)

- \rightarrow PRECEPT (Franklin et al., 1995)
 - □ Expert system with database
 - Mono-treatments

Short review: 2. tribology

Radar plots (redrawn from Galerie et al.)

Performance index

Specific approaches:

- □ Thermal fatigue: thermal cycles
- □ Input: substrate + (multi-)treatments
- □ Thermal, mechanical properties
- □ Classifying using a calculator

ULB Short review: 3. generalist systems

Objectives:

- Dealing with most possible requests in a qualitative fashion
- Dealing with most processes categories
- Giving possible « ideas », helping to find then the « right » expert
- Preselection tool
 - Not giving the exact thickness, composition, nor process parameters for each « candidate »

Expert systems, databases:

- Most data are binary
- □ Corrosion, tribology, basic optical properties, aesthetics
- □ Interaction between processes, substrates and deposited materials

Examples:

- □ Apticote-Isis
- \Box ST2S:
 - Child/parent structure of the database

EXPESURF

□ Web-based tool:

- User interface
- Expert interface for further enrichment
- Written in Prolog at FUNDP
- □ Inference engine:
 - Analysis of the required properties
 - Treatments (layer + process) and stacking selection
 - Classification according to the ease of production

ULB EXPESURF

Main features:

 Database: processes, materials properties, substrate compatibility

- Process/substrate compatibility
- Layer/substrate compatibility
- Layers and processes partially separated
- Multi-treatments: logical tool:
 - 1 layer = 1 property or 1 « bond coat » layer
 - No numerical approach
 - > No synergistic effects

Outer layer:

Wear, friction, weldability, aesthetics, hardness, preparation for painting, anti-sticking

Electrical or thermal conductivity if necessary

Intermediate layers in any order:

thermal conductive/insulating layer, thermal conductive/insulating layer, diffusion barrier, anticorrosion

> Underlayer: Fatigue

Substrate

🚺 🚳 🔁 📀 I	Les champs obligatoires sont marqués d'un *	
Projet 1 🛽		
DESCRIPTION DE LA PIÈCE		۰
Nature de la pièce		×
Sélection par norme	?	
Sélection par composition	?	
Nature de la pièce	Nom Composition	
Forme de la pièce		
Dimensions de la pièce	? Pièce prismatique ▼	
	Longueur 2 100 mm	
Paroi fine		
Pièce fragile		
- Trous recensés	Aiguter up trou Supprimer up trou Diamètre Profondeur Borgne Filete	
Filetages recepcés		
i liciages i écenses	Ajouter un filetage Supprimer la selection	
Rainures recensées	? Ajouter une rainure Supprimer la sélection Profondeur Ecartement	
Historique de la pièce		
Soudure	?	
Collage	3	
Fixation mécanique		
Rugosité superficielle	N6 N7 N8 N9 N10 N11	
		•
MILEU DE FONCTIONNEMENT DE	LA PIÈCE	0
Contraintes particulières		0
PROPRIÉTÉS FONCTIONNELLES		0

0

0

III 💓 🛃 🧭 I	Les champs obligatoires sont marqués d'un *
Projet 1 🕲	
DESCRIPTION DE LA PIÈCE	
MILEU DE FONCTIONNEMENT D	ie la pièce
Température du milieu	Température fixe
	Température fixe ? 20
Environnement	? Environnement non corrosif pour le substrat
Contact avec d'autres matériaux	? Pas de contre-pièce en contact
Abrasion critique	?
Anti-adhérence	?
Fatigue mécanique	7
Fretting	
Dureté	
Dureté de la couche finale : sélection d'un test	
Dureté	

Contraintes particulières Propriétés fonctionnelles

1 🚳 🔁 📀 1	Les champs obligatoires sont marqués d'un *	
Projet 1 🛇		
DESCRIPTION DE LA PIÈCE		٥
MILEU DE FONCTIONNEMENT DE LA PIÈCE		0
Contraintes particulières		0
Traitement localisé	3	
Traitement localisé sans masque uniquement	?	
Traitement sur site	?	
Surépaisseur	? Aucune limite	
Post-opération de déformation mécanique	?	

🟢 🚳 🔁 📀 Les champs obligatoires sont marqués d'un *	
Projet 1 😒	
Description de la pièce	0
MILEU DE FONCTIONNEMENT DE LA PIÈCE	0
Contraintes particulières	0
PROPRIÉTÉS FONCTIONNELLES	۲
Esthétique	0
Couleur	
Brillance	
Caractéristiques électriques	0
Caractéristiques électriques	
ccnene ?	
Caractéristiques thermiques	0
Corostóriotiques thermiques	
Echelle thermique	
Autres	0
Accrochage peinture (ce logiciel ne sélectionne pas la peinture, seulement les traitements sur lesquels elle est susceptible d'adhérer) Soudabilité	
Propriétés complémentaires	0
Compatibilité médicale	
Compatibilité alimentaire	
Barrière de diffusion ?	
Barrière de diffusion à	
Barrière de diffusion à l'eau 🔗	

ULB Discussion: turbine blade oxidation

Study case:

Results:

- Substrate: Ni superalloy
- □ 950°C in oxygen

Evolutive database:

- Data can be refined
- Bond coat implementation

Nombre de Classeme Couches Different techniques for yttria-stabilised zirconia: sous-solutions IN 600 Al2O3 dur 6 IN 600 SiO2 5 Epaisseur Solution Evaluation Classement (µm) 4 IN 600 Al2O3-SiO2, mullite 4 Substrat: IN 600 IN 600 YSZ 4 4 22 100 Couche 1: YSZ Immersion - Céramique 6 IN 600 1 Substrat: IN 600 6 21 100 11 IN 600 MgO 5 Couche 1: YSZ Projection - Céramique IN 600 Ni80Cr20 11 3 Substrat: IN 600 6 21 20 Couche 1: YSZ Projection thermique plasma 11 IN 600 CSZ 3 Substrat: IN 600 50 16 IN 600 YSZ 4 13 100 Emaillage par électrophorèse Couche 1: YSZ 18 IN 600 NiCrAIY 8 18 2 IN 600 FeCrAIY Ease of production / relevance 24 IN 600 AI2O3-TiO2(13%) 2 24 2 IN 600 NIAL 34 IN 600 FeAl 1 34 IN 600 CUNICrAIY 8 Aluminizing using pack cementation: 50 IN 600 Ca10(PO4)6(OH)2, hydroxyapatite 1 50 IN 600 Al2O3 UltraDur 2 Epaisseur Solution Evaluation Classement (um) 50 IN 600 B4C 3 Substrat: IN 600 21 63 IN 600 MoSi2 5 Spécialisation: Aluminisation - Milieu solide 3 65 IN 600 BCN 67 5 IN 600 SICN 74 7 IN 600 Pt100

Discussion: thermal protection

Study case:

- □ Same as previously
- □ + excellent thermal insulation coating

Results: two « routes »:

- □ Selecting the above treament that are also insulative
- □ Using multi-treatements: insulating layer / anti-oxidation layer:

Classement	Solution	Evaluation	Epalsseur (µm)
23	Substrat: IN 600 Couche 1: Ni80Cr20 Projection thermique plasma Couche 2: Al2O3-SiO2, mullite Projection thermique à la flamme	20	60
39	Substrat: IN 600 Couche 1: Ni80Cr20 Projection thermique High-Velocity OxyFuel Couche 2: Al2O3-SiO2, mullite Projection thermique à la flamme	19.5	60

Explaining unit:

Materiel	Proprietes	Couche(s)
Al2O3-SiO2, mullite	Isolation thermique, Oxygéné (milieu oxydant)	Couche 2
Ni80Cr20	Oxygéné (milieu oxydant)	Couche 1
IN 600		Substrat

Discussion: coal combustion

Context:

- □ Sulphur from coal \rightarrow sulphur oxides
- □ NaCl and these oxides form Na_2SO_4 (l) → corrosion

Study case:

- □ Substrate: AISI 304 stainless steel
- □ 900°C in sulphur containing atmosphere

Discussion: coal combustion

Classement	Solution	Evaluation	Epaisseur (µm)
6	Substrat: Inox AISI 304 Couche 1: NiCrAIY <mark>50µm</mark> Projection thermique plasma	19	50
9	Substrat: Inox AISI 304 Couche 1: NiCrAIY <mark>50µm</mark> Revêtement par voie chimique à l attache (type acide)	18	50
9	Substrat: Inox AISI 304 Couche 1: NiCrAIY <mark>50µm</mark> Projection thermique High-Velocity OxyFuel	18	50
9	Substrat: Inox AISI 304 Couche 1: NiCrAIY <mark>50µm</mark> Revêtement par voie chimique en vrac (type acide)	18	50
14	Substrat: Inox AISI 304 Couche 1: NiCrAIY <mark>50µm</mark> Revêtement par voie électrolytique en vrac (type acide)	17	50
14	Substrat: Inox AISI 304 Couche 1: NiCrAIY <mark>50µm</mark> Revêtement par voie électrolytique à l attache (type acide)	17	50
19	Substrat: Inox AISI 304 Couche 1: NiCrAIY <mark>50µm</mark> Revêtement par voie chimique localisé (type acide)	16	50
23	Substrat: Inox AISI 304 Couche 1: NiCrAIY <mark>50µm</mark> Revêtement par voie électrolytique localisé (type acide)	15	50

Classement	Solution	Evaluation	Epaisseur (µm)
32	Substrat: Inox AISI 304 Couche 1: MoSi2 0.2µm Pulvérisation cathodique	7	0.2

Discussion: coal combustion

More restrictive requirement:

- □ Big component (10 m X 10 m)
- □ «In situ process »
- PVD coatings « disappear »

Electrolytic processes can be performed using specific devices

Classeme	Couches	Nombre de sous-solution:
1	Inox AISI 304 Ni80Cr20	2
2	Inox AISI 304 NiCrAIY	4
2	Inox AISI 304 FeCrAIY	2
5	Inox AISI 304 NiAI	2
8	Inox AISI 304 FeAI	1
8	Inox AISI 304 CoNiCrAIY	4
16	Inox AISI 304 Pt100	2

Classement	Solution	Evaluation	Epaisseur (µm)	
2	Substrat: Inox AISI 304 Couche 1: NiCrAIY <mark>50µm</mark> Projection thermique plasma	19	50	
5	Substrat: Inox AISI 304 Couche 1: NiCrAIY 50µm Projection thermique High-Velocity OxyFuel	18	50	
11	Substrat: Inox AISI 304 Couche 1: NiCrAIY 50µm Revêtement par voie chimique localisé (type acide)	16	50	
13	Substrat: Inox AISI 304 Couche 1: NiCrAIY <mark>50µm</mark> Revêtement par voie électrolytique localisé (type acide)	15	50	

Conclusion

New system including a « multilayer builder »: EXPESURF:

- □ Wide range of implemented treatments
- Multi-treatments
- Compromise between « proposing » and « excluding »
- **Classical solutions are obtained in « classical » problems**

Perspectives:

- □ More data on compatibility between layers and substrates
- More standardization
- Advanced exclusion tools
- Permanent improvement of the database

Need for experts from different sectors to feed up the database and further improve the system

É D'EUROPE

Thanks for your attention