ULB

Monitoring thermal properties of a composite material used in thermochemical heat storage

Pierre D'Ans¹, Wolfgang Hohenauer², Emilie Courbon³, Marc Frère³, Marc Degrez¹, Gilbert Descy⁴

Eurotherm n°99 - Lleida, May 29th 2014

¹Université Libre de Bruxelles (ULB), Brussels (B) ²AIT Austrian Institute of Technology GmbH, Wien (A) ³UMONS, Institut de Recherche en Energie, Mons (B) ⁴BE-SOL R&D, Rochefort (B)

- Conductivity measurement in dry conditions in wet conditions
- Results
 - Comparison dry/wet conditions
 - □ influence of moisture
- Discussion
- Conclusions

- SoTherCo project
- Solar heating for residential buildings:
 - □Inter-seasonal storage of solar heat using salts and a reversible reaction
 - **D**Thermochemical storage
- Funding: European Commission, FP7

- Low grade heat storage
- Thermochemical storage offers high energy density

$S.xH_2O \implies S.(x-y)H_2O + yH_2O$

(S = salt of divalent metal + sulfate, nitrate or halide)

- Major structural changes during use phase
- S usually entrapped in a porous matrix like silicagel or activated carbon to stabilize the macroscopic structure:
 - **D**Reproducibility of storage cycles
 - □Heat and water transfer

- Need of numerical data for heat transport models \Box Thermal conductivity $\lambda(T,\%)$ for salt-matrix system with voids between the grains
 - Influence of the state of hydration of the salt
- ... for a proper automation of theses systems
- Correlation with mass change?
- Is mass transfer more limiting than heat transfer?

Studied material:

- $\square Synthesized at UMONS$
- □Grains of ~200 µm diameter of composite (salt, inorganic matrix)

Measurements in dry conditions: Preconditioning of composite (dry state)
Transient Hot Bridge Method (THB)

≻Theory: from transient Thermal Conductivity Phenomenology

 $\blacktriangleright Measurement: Geometry (\rightarrow THB sensor), Parameters (\rightarrow thermoelectric), THB response$

TBH Sensor

Temperature distribution in a sample

measured TBH response, used to examine λ /W/mK, and a /m²/s

Measurements under controlled atmosphere:

Measurements under controlled atmosphere:

Final step: rehydration

ULB

Comparison dry/wet (after transients)

λ higher in hydrated state

Wet conditions (after transients):

Reversibility

Wet atmosphere: m and λ transients

Wet atmosphere: m and λ transients

Wet atmosphere: m and λ transients

Discussion

- Loss of molecules of H₂O when: T increases
 - $\Box p_{water}$ decreases
- Transition mostly occurs at 35-60°C
- Dry material: λ increases with T: typical for ceramics
- Wet conditions: λ decreases with T: $\Box H_2O$ desorption \rightarrow more voids \Box Different hydrates have different intrinsic λ \Box Change in convection processes

Discussion

At 80°C: very little difference between dry and wet experiences: same proportion of H_2O in the salt?

λ during transients: to be interpreted carefully:
□THB method assumes no heat source or sink
□Assumption violated because of water desorption
□% moisture measured by the chamber not representative of % moisture inside the bed

For adapted solutions, see for instance:

Koci J. et al., Proc. Thermophysics, Podkylava, 2013, 55-71

Discussion

- Need of modelling work:
 - Existing models focus on the amount of water inside the pores
 - Convection around grains neglected
 - Conduction at contact points between grains

Conclusions

Experience to assess $\lambda(T,\%)$

Slight increase of $\lambda(T)$ in dry composite

Pronounced decrease of $\lambda(T)$ in wet composite at dehydration

 $\lambda_{\rm wet}({\rm T})>\lambda_{\rm dry}({\rm T})$

Water release generates complex transients

 $0.12 < \lambda < 0.17 \text{ W.m}^{-1}.\text{K}^{-1}$

Mass transfer at adsorption is a more important limitation for real life application

Conclusions

Perspectives:

- **D**Assessing convection phenomena between the grains
- Assessing conduction in the presence of a endo/exothermic reaction
- □Mass transfer limitation to be solved in real-life conditions

Thank you for your attention

Contact: <u>pdans@ulb.ac.be</u>