

Bénédicte Famerée, Pierre D'Ans (*), Marc Degrez

(*) Université Libre de Bruxelles (ULB), 50 Av. FD Roosevelt, 1050 Bruxelles, +32 (0)2 650 30 28, pdans@ulb.ac.be

4MAT DEPARTMENT AT ULB

• 4MAT = characterization, synthesis, processing & recycling

Marie-Paule Delplancke	Marc Degrez	Stéphane Godet

- Marc Degrez's team:
 - Study of recycling processes
 - Life cycle assessment
 - Process improvement

ROADMAP

- Supply risk and scarcity
- Demand & applications
- Primary production:
 - Offer
 - Processes
 - Environmental aspect
- Secondary production:
 - Available waste
 - Current practice
 - Obstacles
- Solutions?

SUPPLY RISK AND SCARCITY

• Point of view of the NRC

What happens if gallium is not provided?

Is it available? (short, long term)

4

SUPPLY RISK AND SCARCITY

• Point of view of the EC

• No European (or World) project of Ga recycling in consumers goods

5

DEMAND & APPLICATIONS

Overview

ROSKILL (2011), Gallium : Global Industry Markets and Outlook : Eighth edition, Roskill Information Services, 108 p.

DEMAND & APPLICATIONS

- Ga can be considered as « critical »
- → Is secondary production able to mitigate the problem?

- Needed for emerging technologies
- → Increased permissivity for Ga primary production?

Primary production

- Abundance: 19 ppm
- No profitable ore
- Extracted as a byproduct of Al and Zn production
- Bauxite:
 - ~50 ppm
 - > 1 MT available
- World production:

Survey (USGS) (2011a), Mineral Commodity Summaries: Gallium

• World capacity:

MAL Hungarian Aluminium Ltd

Sharp increase!

• European reserves:

- Assumptions on gallium concentration
- Assumption on extraction rate: 40%

• Effective extraction rate: < 2%

• « Rhône-Poulenc » process for extraction

CLASSEN M *et al* (2009), « 3. Gallium, semiconductor-grade, in *Life Cycle Inventories of Metals* econovent v2 1 report No. 10 (2009), pp. 13-22

PRIMARY PRODUCTION

- Need for refining
 - Obtained purity after extraction = max. 4N
 - Required for integrated circuits: 6-7N
- Refining options:
 - Vacuum distillation
 - Electrolytical refining

• Material processing for further application?

• For integrated circuits

• Monocrystalline GaAs production for chips: Vertical

Gradient Freeze (VGF)

- Slicing into wafers
- Etching
- Epitaxial growth of layers: HVPE,...
- Cutting into chips

Ga losses:

- -In boric oxide
- -In cutting and grinding operations

Boric oxide

« III-V Compound Semiconductors: Growth », in Encyclopedia of Materials

- For photovoltaics: CIGS technology
 - « Thin film » or « second generation » PV
 - Sputtering (or CVD)

PRIMARY PRODUCTION

- For LED and lasers: GaAs, GaN, GaP, GaSb
- Special alloys:
 - For Ga-In-Sn for thermometers
 - For magnets
 - For biomedical imaging, dental alloys,...

Inventories, Dübendorf, 2010, retrieved from:

- Environmental impact of raw Ga:
 - Climatic impact ~ silver
 - $205,33~{
 m kg~eq~CO_2/kg}$ (source: Ecoinvent impact: IPCC 2007 100 years 6N Ga)
- Environmental issue for PV panels:
 - CVD: most energy intensive step
 - Payback time: CIGS > Si
 - Expected improvements
- Health issue:
 - GaAs: cancer
 - AsH₃: lung, heart,... diseases

Recycling, to mitigate these impacts?

SECONDARY PRODUCTION

- Process scraps: 80% losses in MOCVD & MBE (source: IMEC) 10-20 T
- End of life products: « urban mine »

2010	2012	2020	2025	2030	
	LCD	LED	Li-ion	PV	
		lamps	bateries		

Recent demand met using stocks or secondary materials

SECONDARY PRODUCTION

- Recycling from production scraps:
 - Little data
 - According to Neo Material: 140 tons (50% of total production)!
 - Semiconductors:
 - 90% of the scraps are recycled!
 - Process:

• Waste caracterisation: wafer production: Ga content

Broken wafers, out of dimensions parts,	39-48%
Powder from cutting	30-46%
Polishing residues	< 1%

SECONDARY PRODUCTION

- Recycling from production scraps: (2)
 - CIGS:
 - Not too critical: efficiency = 50%
 - Internal recycling at UMICORE Hoboken
 - Applied to the vacuum chamber dust
 - Product: concentrated gallium hydroxide

SECONDARY PRODUCTION

- Recycling from EoL products: does not exist!
 - Ga is very dispersed in LED, CIGS and circuits
 - Low price: $300 \text{ } / \text{kg} \rightarrow \text{economic return?}$
 - Future increase?
 - Carbon footprint of primary Ga is not high enough
- And more generally
 - Confidentiality
 - Price difficult to foresee
 - Crisis

CONCLUSIONS AND PERSPECTIVES

- Scarce data on scraps
- Collecting Ga containing EoL goods:
 - Control flows
- Recovery of Ga from EoL goods?
 - Composite materials: separation
 - Trace elements in materials
- Need for a LCA in order to assess the potential processes for secondary Ga processing

Flow

- Energy bill
- Mineral resources
- Clean recycling?
- Time aspect

CONCLUSIONS AND PERSPECTIVES

• Accounting for:

- Process losses
- The absence of EoL recycling
- The increasing demand

• Should we:

- Develop recycling technologies?
- Produce more primary Ga?
- Reduce the consumption via ecodesign?
 - CVD processes
 - Consumers goods

Thank you for your attention!

4MAT

- 3 Professors
- 10 administrative and technical staffs
- ~ 20 researchers: PhDs, post-docs, researchers under industrial contracts (chemists, metallurgists, engineers in chemistry and material science, physicists)
- Address:

ULB – 4MAT- CP 165/63

50 av. F.D Roosevelt – B1050 Bruxelles - Belgium

Phone: +32 2 6502993

Fax: +32 2 6503653

Email: mpdelpla@ulb.ac.be

http://www.ulb.ac.be/rech/inventaire/unites/ULB662.html

RESEARCH AXES

- •4MAT is interested in the full life cycle of materials (mostly inorganic) along four major research axes:
 - •Synthesis and characterization of bulk and (thin) layered materials
 - •Structure-Properties Relationships
 - Reactivity at interfaces including surface treatments
 - Recycling and valorization of secondary materials
 - •The studies are developed from nano- to macro-scale. The research spans from purely fundamental studies to the design of pilot installations.

RESEARCH AXES

- •Surface modifications and thin films deposition (including nanostructured samples) by plasmas (PVD, PECVD) and the relationship between the deposition conditions and the functional properties
- •Innovative thermomechanical treatments: microstructure optimization, texture and phase transformations
- Mechanisms of defaults formation in small size materials
- •Reactivity of hydraulic materials and incorporation of secondary materials
- •Recovery of metals
- •Life cycle analysis of materials

