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Abstract

We discuss the dependence of pure Yang-Mills equation of state on the choice of gauge algebra.

In the confined phase, we generalize to an arbitrary simple gauge algebra Meyer’s proposal of mod-

elling the Yang-Mills matter by an ideal glueball gas in which the high-lying glueball spectrum is

approximated by a Hagedorn spectrum of closed-bosonic-string type. Such a formalism is unde-

fined above the Hagedorn temperature, corresponding to the phase transition toward a deconfined

state of matter in which gluons are the relevant degrees of freedom. Under the assumption that the

renormalization scale of the running coupling is gauge-algebra independent, we discuss about how

the behavior of thermodynamical quantities such as the trace anomaly should depend on the gauge

algebra in both the confined and deconfined phase. The obtained results compare favourably with

recent and accurate lattice data in the su(3) case and support the idea that the more the gauge

algebra has generators, the more the phase transition is of first-order type.
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I. INTRODUCTION

The existence of a critical temperature, Tc, in QCD, is of particular phenomenological

interest since it signals a transition from a confined phase of hadronic matter to a deconfined

one. When T < Tc, a successful effective description of QCD is the hadron resonance gas

model, in which the hadronic matter is seen as an ideal gas of hadrons. It compares well with

current lattice data when the meson and baryon resonances below 2.5 GeV are included [1].

A problem is that experimental information about resonances above 3 GeV is still lacking.

To describe the high-lying hadronic spectrum, Hagedorn [2] proposed a model in which the

number of hadrons with mass m is found to increase as ρ(m) ∝ ma em/Th (a is real): the so-

called Hagedorn spectrum. Thermodynamical quantities, computed using hadronic degrees

of freedom, are then undefined for T > Th. Other degrees of freedom are then needed at

higher temperatures, so it is tempting to guess that Th ≈ Tc, the new degrees of freedom

being deconfined quarks and gluons.

Although the current lattice studies agree on a value of Tc in the range (150− 200) MeV

when 2 + 1 light quark flavours are present [1, 3], there is currently no consensus concerning

the value of Th. Indeed, to reach values of Th as low as 200 GeV demands an ad hoc

modification of ρ(m): By introducting an extra parameter m0 and setting ρ(m) ∝ (m2 +

m2
0)a/2 em/Th , one can reach values of Th in the range (160−174) MeV, that agree with lattice

computations, see e.g. [4, 5]. However, by taking the original form m0 = 0, one rather ends

up with values of Th around (300 − 360) MeV, see [6, 7]. Moreover, it has been observed

in some pure gauge lattice simulations with the gauge algebra su(N) that Tc . Th [8, 9] as

intuitively expected. It has to be said that the value of Th and its relation to Tc are still a

matter of debate.

Open strings as well as closed strings naturally lead to a Hagedorn spectrum, see e.g.

[10]. Modelling mesons as open strings is a way to make appear a Hagedorn spectrum in

QCD [11]. The question of showing that a Hagedorn spectrum arises from QCD itself is still

open but, under reasonable technical assumptions, it has recently been found in the large-N

limit of QCD [12] (glueballs and mesons have a zero width in this limit). In the pure gauge

sector, the su(3) equation of state computed on the lattice has been shown to be compatible

with a glueball gas model in which the high-lying spectrum is modelled by a gas of closed

bosonic strings [13].
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Besides QCD, pure Yang-Mills (YM) thermodynamics is challenging too, in particular

because it can be formulated for any gauge algebra. A clearly relevant case is the one of

su(N)-type gauge algebras, linked to the large-N limit of QCD. Moreover, a change of gauge

algebra may lead to various checks of the hypothesis underlying any approach describing

su(3) YM theory. To illustrate this, let us recall the pioneering work [14], suggesting that

the phase transition of YM theory with gauge algebra g is driven by a spontaneous breaking

of a global symmetry related to the center of g. Effective Z3-symmetric models are indeed

able to describe the first-order phase transition of su(3) YM thermodynamics [15]. However,

a similar phase transition has also been observed in lattice simulations of G2 YM theory [16]

even though the center of G2 is trivial, meaning that the breaking of center symmetry is not

the only mechanism responsible for deconfinement. For example, it is argued in [17] that

the YM phase transition for any gauge group is rather driven by dyons contributions. In

this case, still under active investigation, studying different gauge algebras helps to better

understand the general mechanisms of (de)confinement in YM theory. For completeness,

we mention that the structure of the gluon propagator at low momentum as well as the

Dyson-Schwinger equations in scalar-Yang-Mills systems have recently started to be studied

for generic gauge algebra [18, 19].

The main goal of the present work is to give predictions for the equation of state of YM

theory with an arbitrary simple gauge algebra. This topic has, to our knowledge, never been

investigated before and will be studied within two well-established different frameworks: A

glueball gas with a high-lying Hagedorn spectrum in the confined phase (Sec. II) and a gluon

gas above the critical one (Sec. III). Some phenomenological consequences of the obtained

results will then be discussed in Sec. IV. More specifically, our results apply to the following

gauge algebras : Ar≥1 related to su algebras, Br≥3 and Dr≥4 related to so algebras, Cr≥2

related to sp algebras, and the exceptional algebras E6, E7, F4 and G2. The case of E8 is

beyond the scope of the present paper as it will be explained below.
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II. GLUEBALL GAS AND THE HAGEDORN SPECTRUM

A. The model

In the confined phase, glueballs, i.e. colour singlet bound states of pure YM theory,

are the relevant degrees of freedom of YM matter. Hence it can be modelled in a first

approximation by an ideal gas of glueballs, assuming that the residual interactions between

these colour singlet states are weak enough to be neglected [20]. Note that the glueball

gas picture emerges from a strong coupling expansion in the case of large-N su(N) YM

theory [21], where glueballs are exactly noninteracting since their scattering amplitude scales

as 1/N2 [22]. The glueball gas picture implies that, for example, the total pressure should

be given by
∑

JPC p0(2J + 1, T,MJPC ), where the sum runs on all the glueball states of the

YM theory with a given gauge algebra, and where

p0(d, T,M) =
d

2π2
M2T 2

∞∑
j=1

1

j2
K2(j M/T ) (1)

is the pressure associated with a single bosonic species with massM and d degrees of freedom.

Performing the sum
∑

JPC demands the explicit knowledge of all the glueball states, not

only the lowest-lying ones that can be known from lattice computations or from effective

approaches. To face this problem, it has been proposed in [13] to express the total pressure

of su(3) YM theory as

p =
∑

M
JPC<2M0++

p0(2J + 1, T,MJPC ) +

∫ ∞
2M0++

dM p0(ρ(M), T,M), (2)

where the high-lying glueball spectrum (above the two-glueball threshold 2M0++) is approx-

imated by a closed-string Hagedorn density of states reading, in 4 dimensions [10, 13],

ρ(M) =
(2π)3

27Th

(
Th
M

)4

eM/Th . (3)

The idea of modelling glueballs as closed fundamental strings was actually already present in

the celebrated Isgur and Paton’s flux-tube model, inspired from the Hamiltonian formulation

of lattice QCD at strong coupling [23]. Moreover, it has also been shown within a constituent

picture that, in the su(3) case, a many-gluon state (typically more than three gluons in a

Fock-space expansion) tends to form a closed gluon chain [24].
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In Eq. (3), Th is the Hagedorn temperature, which reads in this case

T 2
h =

3

2π
σ(f), (4)

where σ(f) is the fundamental string tension, here defined as the slope of the static en-

ergy between two sources in the fundamental representation of a given gauge algebra. The

Casimir scaling of the string tension, which is an analytic prediction from the strong coupling

expansion of the Wilson loop, says that the string tension is given by [25, 26]

σ(r) = C
(r)
2 Θ, (5)

where the colour sources are in a given representation r of the gauge algebra, and where Θ

reads, in a lattice formulation of the theory [25]

Θ =
g2(aΛ)

2a
. (6)

a is the lattice size and g(aΛ) is the running coupling with the renormalization scale Λ.

Following well-known two-loop calculations, one can extract the explicit gauge-algebra de-

pendence in the running coupling as follows: g2(aΛ) = λ(aΛ)/C
(adj)
2 [27], where λ is nothing

else than the ’t Hooft coupling when the gauge algebra is su(N). One can finally define

σ(r) =
C

(r)
2

C
(adj)
2

σ0, (7)

where σ0, that can be interpreted as the adjoint string tension, does not depend explicitly

on the gauge algebra. However, an implicit dependence in the renormalization scale Λ may

be present. Throughout this work we consider a gauge-algebra independent value for Λ.

The structure of the low-lying glueball spectrum for an arbitrary simple gauge algebra has

been discussed in detail in [28] within a constituent picture, although the results which are

useful for our purpose could be recovered in a more model-independent way by studying e.g.

the structure of glueball-generating field-strength correlators. Let us recall those results:

• The lightest glueballs are the scalar, pseudoscalar and tensor ones, whose masses

are ordered as M0++ < M2++ , M0−+ in agreement with lattice results in the su(N)

case [29, 30]. Those states are found to be lighter than 2M0++ in these last works.

Note that it has been proved in [31] that the 0++ glueball is always the lightest one

in YM theory.
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• At masses typically around (3/2)M0++ , states that can be seen as mainly three-gluon

ones in a Fock-space expansion appear: They can have C = + for any gauge algebra,

but C = − for Ar≥2 (su(N ≥ 3)) only. In this last case, the 1+− glueball is still lighter

than 2M0++ [29, 30].

• Higher-lying states (containing more than three gluons in a Fock space expansion)

obviously exist, but their exhaustive study cannot be performed explicitly, eventually

justifying the use of a Hagedorn spectrum. An important remark has nevertheless to

be done: If all the representations of a given gauge algebra are real, the gluonic field

Aµ is its own charge-conjugate, eventually forbidding C = − glueball states. This

happens for the algebras A1, Br≥2, Cr, Deven−r≥4, E7, E8, F4, and G2.

It is worth noticing that a closed-string picture for high-lying glueballs is not only a

consequence of Isgur and Paton’s flux-tube-like approaches but may also be compatible

with constituent approaches such as the one used in [28]: An excited closed string is then

alternatively viewed as a closed chain of quasigluons where the quasigluons are linked by

fundamental strings. From a string theory point of view, the Nambu-Goto string can be

coherently quantized within both pictures using e.g. the Gupta-Bleuler method [32]. More-

over, since adj ∈ f ⊗ f or f ⊗ f̄ , with f (f̄) the fundamental (conjugate) representation

for any simple gauge algebra, a gluon can always generate two fundamental strings, with

σ(f) = σ(f̄) in virtue of the Casimir scaling, instead of one adjoint string. In the case of

E8, the lowest-dimensional representation, that we have called fundamental before, is the

adjoint one, so the closed-string picture seems less justified by comparison to a constituent

picture. We therefore prefer not to investigate further the case of E8 in the following.

B. Linking Th to Tc

As a first step, the link between Th and Tc has to be fixed. A straightforward way to

do it is to briefly recall Meyer’s results in the pure gauge su(3) case [13], where the lattice

entropy density s = ∂Tp computed below Tc has been fitted by using the present model.

It appears that the best agreement is reached for Th/Tc = 1.069(5). Finding Th > Tc is

actually an indication that a metastable, superheated, hadronic phase of matter exists at

temperatures between Tc and Th; this phase has actually been studied on the lattice in [9],
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where, for example, Th/Tc = 1.116(9) has been found for the gauge algebra su(12), and

discussed within the framework of an open-string model in [11].

As seen from the above discussion, an accurate determination of the ratio Th/Tc is of

great phenomenological interest. However, such a study is not the main purpose of the

present paper, where we aim at giving reliable predictions for the equation of state of YM

theory with an arbitrary gauge algebra. As observed in [13], typical values Th ≈ Tc give

very good results in fitting the lattice data. Setting Tc = Th, as we will do in the rest of

this work, means that the deconfinement temperature may be identified with the maximal

allowed temperature for the confined hadronic phase. This assumption has two advantages.

First, it will reproduce accurately the latest su(3) lattice data of [33] (see next section), and

it is not in strong disagreement with current su(N) results, where Th/Tc is at most around

10% [8, 9]. Second, it is applicable to any gauge algebra without having to guess a value

for Th/Tc, that cannot be fitted on lattice results since no equation of state is available for

gauge algebras different than su(N) so far. The drawback of this choice is that it forbids any

discussion about a superheated hadronic phase in generic YM theories. Such a refinement

of the model will rather be the topic of a separate study.

For completeness, we notice that the somewhat surprising value Th = 2.8Tc � Tc has

been found in [34] by using a Hagedorn picture too. The difference with our approach comes

from the fact that, in [34], Th is fitted by assuming that the low-lying glueballs currently

known from lattice simulations should exhibit a Hagedorn-type spectrum. On the contrary,

we think here that the Hagedorn-like behavior only appears in the high-lying sector, that

mostly concerns the glueballs that are not known so far by lattice calculations, see Eq. (2).

C. Numerical results

According to standard su(3) studies, it is relevant to set σ0 ≈ (9/4) 0.2 GeV2, leading

to Th =309 MeV. The masses of the lightest glueballs are proportional to
√
σ0 [28], so they

can be thought as constant with respect to a change of gauge algebra in our approach.

Consequently, the sum
∑

M
JPC<2M0++

should run on all the states below 3.46 GeV found in

the su(3) lattice work [29]. There is an exception however: The 1+− glueball, whose mass

is below the two-glueball threshold, only exists when the gauge algebra is Ar≥2 [28]; hence

its contribution will be omitted in the other cases. Concerning the Hagedorn spectrum,
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FIG. 1. (Color online) Trace anomaly below Tc, computed using Eqs. (2) and (8) with Th = Tc and

σ0 = (9/4)0.2 GeV2, for the gauge algebras A2 (solid line), AN→∞ and DN→∞ (dashed line), G2

and CN→∞ (dotted line). All the possible cases are located within the grey area, whose upper and

lower borders are E6 and A1 respectively. su(3) lattice data from [33] are plotted for comparison

(orange points and area). The orange points correspond to Nt = 8 data.

it is worth recalling that the density (3) is able to reproduce the su(3) lattice equation of

state with Tc ≈ Th [13]. But ρ(M) accounts for both the C = + and C = − glueballs.

When the gauge algebra has only real representations, the C = − sector is absent as said

before. So in such cases, the substitution ρ(M) → ρ(M)/2 will be done. The validity of

this prescription has been explicitly checked in [35] by computing the equation of state of

2+1-dimensional YM theory below Tc with su(N) gauge algebras: ρ(M) correctly describes

the data for su(3− 6), while ρ(M)/2 must be used for su(2) in order to compensate for the

absence of C = − states in the theory.

We are now in position of explicitly computing the pressure (2) for any gauge algebra,

E8 excepted. We actually compute from p the trace anomaly, using

∆ = T 5∂T

( p

T 4

)
, (8)

so that our results can be compared to the recent and accurate su(3) lattice data of [33],

displayed in Fig. 1.

As a first check, we can see that the proposed model compares well with the su(3) lattice

data of [33]. In a first approximation, the choice Tc = Th thus gives good results. A generic

feature of p and ∆ is that they are finite in Th, and mostly located below the E6 and A1
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cases at any T . This finiteness is due to the M−4 factor in (3) [36], which is a consequence

of the closed-string picture used here. Note that this finiteness is present in 2+1 dimensions

too [35]. An interesting feature is that the large-N limits of the AN and DN (when N is odd)

cases are equivalent, in agreement with the large-N orbifold equivalence between su(N) and

so(2N) YM theories, see e.g. [37]. The large-N limit of the CN (sp(N)) case is however

inequivalent to the AN one, but equal to the G2 case. The observed significant numerical

differences between the gauge algebras are moreover relevant from a physical point of view

since they come from changes in the structure of the glueball spectrum, mainly at the level

of the allowed quantum numbers.

It is worth mentioning that an alternative to the Hagedorn spectrum has been proposed

in [38], i.e. to consider that a Hagedorn spectrum is not present but that the glueball masses

actually decrease near the critical temperature. This scenario can also lead to an agreement

with the data of [33] as checked by the authors of this last work. Only the lightest glueballs

(0±+ and 2++) will then give relevant thermodynamical contributions for any gauge algebra,

and the corresponding equation of state might depend even less on the gauge algebra than

within the Hagedorn picture. However, checking the dependence on T of the glueball masses

for different gauge algebras would demand detailed lattice computations or effective models

that are currently unavailable, thus this topic is out of the scope of the present paper.

III. GLUON GAS AND THE DECONFINED PHASE

As already mentioned, the Hagedorn temperature can be interpreted as a limiting tem-

perature above which confined matter ceases to exist. In the deconfined phase, the relevant

degrees of freedom are expected to be the dim(adj) gluons of the considered YM theory.

When the temperature tends toward infinity, the Stefan-Boltzmann limit should thus be

reached, that is e.g. the pressure

pSB = dim(adj)
π2

45
T 4, (9)

corresponding to the pressure an ideal gas of massless transverse gluons with dim(adj)

colour degrees of freedom in 3 + 1 dimensions. Corrections to this ideal-gas picture are

nevertheless worth to study since it is known from su(3) lattice simulation that one has to

reach temperatures of about (107 − 108) Tc to get pressures compatible with the Stefan-
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Boltzmann limit up to the error bars [39].

The YM pressure (as well as cases with Nf 6= 0) can be systematically computed by per-

forming expansions in the coupling constant g; terms of order g6 ln(1/g) [40] and parts of the

full g6 terms [41] are known so far. Hard-thermal-loop (HTL) resummation techniques also

allow for a determination of YM pressure; results at next-to-next-to leading order (NNLO)

are nowadays available [42]. Recalling the scaling g2 ∝ 1/C
(adj)
2 , the observation of the

formulas obtained in [40, 42] lead to the conclusion that the pressure behaves schematically

as

p

pSB
≡ 1− φ(Λ, T ) (10)

where Λ is a renormalization scale, that we assume to be gauge-independent as before, and

where φ is a positive function that decreases when T increases so that the SB limit is asymp-

totically reached. Once the a priori unknown parameters are fitted, both the O(g6 ln(1/g))

and the NNLO HTL formulae compares very well with the latest su(3) lattice data of [33],

the best agreement being reached with the O(g6 ln(1/g)) formula. In particular, the trace

anomaly ∆, given by

∆

pSB
= T ∂T

(
p

pSB

)
, (11)

is accurately reproduced above 10 Tc (plots range from 1 to 100 Tc in [33]).

One is straightforwardly led to the conclusion that the pressure (10) is gauge-algebra

independent; hence the high-temperature regime of YM thermodynamics should not depend

on the considered gauge algebra once the equation of state is normalized to dim(adj). For

example, the normalized trace anomaly (11) should be gauge-algebra independent. This

feature has already been checked on the lattice in the su(N) case, where it appears that the

pure YM equation of state normalized to (N2 − 1) is indeed universal above Tc up to the

error bars [35, 43, 44].

Just above Tc, where HTL or perturbative methods cannot give reliable information

so far because of convergence problems, gluon-gluon interactions are expected to be quite

strong although not confining. One would then speak of strongly coupled YM plasma. Those

interactions, typically of one-gluon-exchange form, should be proportional to the color factor

(C
(r)
2 − 2C

(adj)
2 )g2/2, where r is the color representation of the gluon pair. The universality

of static colour interactions, once normalized to this last colour factor, has been checked on

the lattice in the su(3) case [45]. For any algebra, one has adj ⊗ adj = • ⊕ adj ⊕ . . . . The
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singlet (•) and adjoint channels will lead to attractive interactions that should not depend

on the gauge algebra since g2 ∝ 1/C
(adj)
2 . Other representations appearing in this tensor

product will have larger values of C
(r)
2 and will lead to either weakly attractive, vanishing,

or repulsive interactions that may eventually be gauge-algebra dependent. The interesting

point is that the most attractive channel is that of a colour-singlet gluon pair, which should

not depend on the considered gauge algebra and which is eventually able to form glueballs.

So the glueball formation (or not) above deconfinement might well be a universal feature

of YM theory; arguments favoring the existence of glueballs beyond Tc have been given for

example in [46]. We mention finally that, in the case of su(N) gauge algebras, each channel

of the tensor product adj ⊗ adj has been explicitly computed in [47]. Two channels lead to

weak N -dependent interactions (with a 1/N colour factor) that may lead to some subleading

N -dependent corrections.

IV. SUMMARY AND DISCUSSION

To summarize, we have discussed two pictures of YM matter that allow to compute its

thermodynamical properties for any gauge algebra. In the confined phase, the relevant de-

grees of freedom are glueballs, whose low-lying states can be separately described, while the

high-lying states are modelled by a closed bosonic string Hagedorn spectrum. Such a spec-

trum exhibits a Hagedorn temperature, above which hadronic matter ceases to exist: The

partition function of a glueball gas with Hagedorn spectrum is not defined above Th, suggest-

ing a phase transition to a deconfined regime. In the deconfined phase, YM thermodynamics

should be the one of an interacting gluon gas.

In the confined phase, the present model compares favorably with the recent pure gauge

su(3) lattice data of [33] with a standard value (9/4) 0.2 GeV2 for the adjoint string tension

and the assumption Tc = Th. This does not excludes that a better fit can be found with

Th & Tc as in [13], or that the value Tc = Th is an artifact due to the simplicity of the model,

especially near Tc. But, the success of equating Tc and Th also suggests that the temperature

range in which a metastable hadronic phase exists is quite small with the gauge algebra su(3).

Keeping the relation Tc = Th as well as the value of the adjoint string tension unchanged,

predictions for the equation of state of YM theory with arbitrary gauge algebras have been

given; it can be hoped that future lattice simulations will be able to confirm them (or not),

11



at least is some cases of current interest like YM theory with G2 gauge algebra.

It is worth saying that identifying the critical temperature to the Hagedorn tempera-

ture leads to the possibility of estimating the gauge-algebra dependence of Tc. A relevant

example is that, in the case of su(N) gauge algebras, we are led to the prediction that

Tc[su(2)]/Tc[su(∞)] =
√

3/2 = 0.866, which can be favourably compared to the Polyakov-

loop based approach [49] finding the value 0.898 for this last ratio. For a sp(2) gauge algebra,

we find Tc[sp(2)]/Tc[su(∞)] =
√

5/6 = 0.913 while a comparable ratio of 0.969 is found in

[49].

Our framework implies that the thermodynamical observables are of O((d−1)×dim(adj))

above Tc for a Yang-Mills theory in d+ 1 dimensions and a gauge algebra having dim(adj)

generators. Consequently, these observables should of O(1) when both C = + and −

glueballs are present, i.e. for Ar≥2, Dodd−r≥5, and E6, and of O(1/2) in the other cases. The

pressure ratio

δ = lim
η→0

p(Tc + η)

p(Tc − η)
, (12)

where η is positive, is then generally of order 2(d−1)dim(adj), but of order (d−1)dim(adj)

for Ar≥2, Dodd−r≥5, and E6[? ]. More explicitly, δ = 16 for su(3) in 3+1 dimensions, a case for

which the phase transition is known to be weakly first order. Some cases can be mentioned

for which δ � 16: su(2) in 3 + 1 dimensions and su(2, 3) in 2 + 1 dimensions. It is tempting

to say that such small gaps should lead to a second order phase transition. Although the

argument seems quite naive, this is indeed the case: It is known from lattice simulations

that the phase transition is of second order in those cases [35]. Moreover, δ = 15 ≈ 16 for

su(4) in 2+1 dimensions, presumably leading to a (very) weakly first-order phase transition,

as observed in [35]. Moreover, δ � 16 for su(N > 3) in 3 + 1 dimensions, corresponding to a

phase trantision more and more of first-order type for su(N) when N increases, in agreement

with previous lattice results [8]. It seems thus that our picture eventually leads to criterion

allowing to guess the strength of the deconfining phase transition in YM theories. Note

that, according to this criterion, any gauge algebra for Yang-Mills theory in 2 + 1 and 3 + 1

dimensions should lead to a first-order phase transition, su(2) (su(2, 3)) in 3 + 1 (2 + 1)

dimensions excepted.

Finally, these results can be linked to an already proposed argument, saying that the

mismatch of the number of degrees of freedom above and below the phase transition is

responsible for the weakly or strongly first-order character of the deconfinement phase tran-
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sition [16, 48, 49]. Here we reach the same conclusion up to a little difference: The number

of glueballs, i.e. the relevant degrees of freedom in the confined phase, is formally infinite

but leads to thermodynamical contributions that do not directly depend on dim(adj), while

the gluons, that control the thermodynamics in the deconfined phase, are finite in number

but lead to thermodynamical contribtutions proportional to dim(adj).
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