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Abstract

Though self-paced walking is highly stereotyped, the stride interval fluctuates from one
stride to the next around an average value with a measurable statistical variability. In
clinical gait analysis, this variability is usually assessed with indices such the standard
deviation or the coefficient of variation (CV). The aim of this study is to understand the
added value that nonlinear indices of walking stride interval variability, such as Hurst
exponent (H) and Minkowski fractal dimension (D), can provide in a clinical context and
to suggest a clinical significance of these indices in the most common neurodegenerative
diseases: Parkinson, Huntington, and amyotrophic lateral sclerosis. Although evidence
have been accumulated that the stride interval organization at long range displays a more
random, less autocorrelated, gait pattern in neurodegenerative diseases compared with
young healthy individuals, it is today necessary to recompute CV, H, and D indices in a
unified way and to take into account aging impact on these indices. In fact, computed
nonlinear indices of variability are mainly dependent on stride interval time series length
and algorithms used, making quantitative comparisons between different studies difficult
or even impossible. Here, we recompute these indices from available stride interval time
series, either coming from our lab or from online databases, or made available to us by
the authors of previously conducted research. We confirm that both linear and nonlinear
variability indices are relevant indicators of aging process and neurodegenerative diseases.
CV is sensitive to aging process and pathology but does not allow to discriminate between
specific neurodegenerative diseases. D shows no significative change in pathological
groups. However, since H index is correlated with Hoehn & Yahr scores and significantly
lowered in patients suffering from Huntington’s disease, we recommend it as a relevant
supplement to CV.
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Introduction

Since the seminal work of Graham Brown [1] on how rhythmic locomotor behaviors are
controlled in mammals, research along this line has continued to expand and is now a
priority topic in disciplines as diverse as physiology, neurosciences and biomechanics.
Natural – even automatic – processes are always accompanied with some randomness.
More recently, the investigation of the variability of those behaviors has revealed, on the
one hand, significant highlights suggestive of underlying mechanisms and control and,
on the other hand, general lessons on motor variability: “ More variable does not mean
more random, and more controllable does not mean more deterministic” [2].

For more than 20 years, researchers have been interested in the long-term structure
of walking, and more particularly in the variability of stride interval (SI). Though human
walking is highly stereotyped, the SI fluctuates from one stride to the next around an
average value with a measurable statistical variability. It appears that the long-term
SI pattern, during a walk for about ten minutes, is auto-correlated: the temporal
characteristics of a step are strongly dependent on the temporal characteristics of the
previous steps [3, 4]. During the 1990s, Hausdorff and his collaborators [3, 4] proposed a
framework for analyzing temporal dynamics of walking SI over a consistent number of
strides (above 500) which has since been successfully used in different physiological and
pathological contexts such as performing a dual task during walking [5,6], studying aging
process during walking [4, 7, 8], investigating the influence of Parkinson’s disease [9–11]
or peripheral neuropathy on walking [12].

Information about the variability of SI are easily provided by linear tools. Nonlinear
goes one step beyond by assessing its complexity and predictability [13]. It is challenging
to diagnosing neurodegeneration at an early stage. Yet, it is also critical since the
sooner an impairment is identified, the larger the likelihood of efficient intervention. We
therefore believe that the assessment of these two complementary indicators of movement
variability could be of major practical importance for the clinician.

The mathematical tools preferably used to quantify structures based on their vari-
ability belong to nonlinear analysis [14], of which fractal analysis is a part. The factor
that has been mostly used in the long-term structure discussed above is the Hurst’s
exponent (H), originally developed in the field of hydrology [15]. This index assesses
the predictability of SI time series. Put differently, it assesses whether its dynamics is
autocorrelated or random. The Minkowski’s fractal dimension (D) of SI time series has
also been proved to be a reliable estimator of complexity over time, see e.g. [13]. Where
does the autocorrelations find its origins in the walking cycle ? What are the hidden
physiological mechanisms that drive behaviors ? Clues or answers to these fundamental
questions could be provided by genuine analyses of indexes such as H or D. However,
the calculation methods used in the aforementioned studies lack homogeneity mainly in
terms of the different algorithms used, which can lead to biases in their interpretation,
and making quantitative comparisons between different studies hazardous.

There is therefore a necessity to process and analyze all available data recorded
in different studies by adopting a unified protocol. Our aim is to assess the influence
of aging in healthy subjects and of common neurodegenerative diseases – Parkinson’s
and Huntington’s diseases and amyotrophic lateral sclerosis – on linear and nonlinear
walking SI variability indexes, using either time series recorded in our lab, available in
online databases or made available to us by the authors of previous research. The two
main questions that will be addressed in this research work are the following. First,
are walking SI variability indices able to differentiate healthy subjects from patients, or
even better provide information about the neurodegenerative disease involved and its
progress? The current literature already suggests an affirmative answer to this question
in the case of Parkinson’s disease [9, 10], but these indexes still need to be explored in
other degenerative diseases. Second, is a clinical use of the walking SI variability indices
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possible, specifically in terms of complexity and predictability of movement variability ?
It has already been suggested that “healthy” biological systems are characterised by an
optimal variability, observable through physiological signals, be it electrocardiogram [8]
or more generic time series coming from motion analysis [16]. Along the lines of that
framework we focus on the peculiar case of SI time series, with the hypothesis that any
departure from an optimal variability defined by the behavior of healthy individuals
may reveal a possible dysfunction to be identified.

Materials and Methods

Time series and variability assessment

SI time series are measured in individuals walking at self-selected pace during a typical
8-minute interval. Time series come from existing databases, personal data and data
from authors of other previously published studies, all of which met standards of
informed consent and ethical oversight. Table 1 presents a summary of the data we
have gathered. We refer the interested reader to the cited references for more details
about the experiments in which these time series were first obtained. Figure 1 depicts
typical SI over time. One can readily observe that each time series fluctuates around an
average value, and that the dynamics of these fluctuations is nontrivial. This dynamics
is assessed by resorting to the methodology developed in [13], that we summarize below.

Table 1. Summary of the different groups analysed in the present work. Data come
from our own lab, from the free online PhysioNet Databases [17], or were given by the
first author of [10]. For each group we display the number of time series available, the
age of participants/ patients under the form mean±SD, and give the minimal and
maximal ages between brackets. The minimal and maximal time series length in each
group are given between brackets in the last column. We also summarize results from
disability scales under the form median [Q1–Q3] when applicable. Healthy groups:
Young Children (YC), Middle Children (MC), Old Children (OC), Adults (AD), Old
Adults (OAD). Pathological groups: Parkinson’s disease (PD), Huntington’s disease
(HUNT), amyotrophic lateral sclerosis (ALS). Disability scales: Modified Hoehn & Yahr
(H&Y) for PD, Total Functional Capacity (TFC) for HUNT, number of months since
first diagnosis (Onset) for ALS.

Group N Age (years) Scale From Length
YC 11 4.2±0.4 [3.3,4.8] [7] [459-550]
MC 20 7.2±0.4 [6.6,7.8] [7] [439-529]
OC 12 12.0±0.8 [11,14] [7] [400-495]
AD 68 25.0±6.7 [18,52] [13,18] [512-936]
OAD 5 70.4±7.0 [57,77] [7] [709-892]
PD 35 66.0±9.9 [44,80] 2.5 [2−3] (H&Y) [9,10] [219-957]
HUNT 20 46.7±12.3 [29,71] 8 [3−10] (TFC) [4] [167-310]
ALS 13 55.6±12.3 [36,70] 18.3±17.1 (Onset, months) [19] [116-246]

Our data set consists in SI time series, denoted as T and containing the durations Ti
of the successive cycles. The time series gathered are of variable length, in particular
because of the small walking speed of patients suffering from neurodegenerative diseases.
As shown in [20], the computed value of variability indices may significantly differ from
their exact, asymptotic, value when time series are shorter than 256 points. We therefore
choose to truncate time series longer than 256 SI to their last 256 points and to keep
unchanged the shorter time series in order to reduce bias associated to time series lengths.

We first computed the average value E(T ) and named it SI in the rest of this
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Fig 1. Typical SI time series for three healthy subjects of different ages: a young child
(YC), an adult (AD) and an old adult (OAD).

work. Then we computed three variability indicators: (1) the coefficient of variation,
CV= SD(T )/SI, which yields the relative amplitude of the SI fluctuations around the
mean value. It is worth noticing that CV does not provide any information on the
temporal structure itself of these variations. Instead, these are quantified by the two
independent indices D and H. (2) The Minkowski fractal dimension, D, is computed
thanks to the box-counting method: if N(ε) is the number of square boxes of size ε
needed to cover the plot of T , then N(ε → 0) ∝ ε−D. D ranges from 1 to 2: The
closer D to 2, the more important the SI relative fluctuations from one cycle to another.
Intuitively, D measures the “apparent roughness” of T , that we also call complexity. (3)
The Hurst exponent H is computed by using the Detrended Fluctuation Analysis with
a linear detrending (higher- order polynomial detrending is sometimes used in other
similar studies). Computational details may be found in [21], but the main steps are
as follows. The cumulated time series Z computed from T are divided into windows of
length l. A local least squares linear fit is performed for each window and the fluctuation
function F (l) is computed. The asymptotic relation F (l → ∞) ∝ lH leads to H. A
random process is close to H = 0.5, while long-range autocorrelated processes are such
that 0.5 < H ≤ 1 (H > 1 for unstable processes) in which an increase in SI is likely to
be followed by another increase in SI at long range, and similarly for a decrease. Time
series with 0 < H < 0.5 are anticorrelated; this case is typically not encountered in SI
time series. H is regarded as a predictability index. Strongly autocorrelated dynamics
are such that the time series value at a given time is strongly dependent of its previous
values, hence predictable.

Computation of SI, CV, H and D has been performed with R software (v.3.4.2) –
packages dfa and fractaldim.

Data analysis

We have first compared AD, PD, HUNT and SLA groups through a one-way ANOVA
with significance level set at p = 0.05. In case of significant group effect, a Holm-Sidak
post-hoc was used for comparison of the pathological groups (PD, HUNT, SLA) to the
AD group seen as a control condition. Kruskal-Wallis test with Dunn’s method was
used if normality test failed. ANOVAs were performed with SigmaPlot software (v.11.0,
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Systat Software, San Jose, CA).
Then we have computed Spearman’s correlation coefficients, ρ, between the different

parameters and subject’s ages for all groups, all healthy subjects (YC, MC, OC, AD,
OAD) having been gathered into the Healthy group. Within the Healthy group, ρ has
been computed between the parameters themselves. In the pathological groups (PD,
HUNT, ALS), ρ has been computed between the different parameters and disability
scores. We consider a correlation as significant if |ρ| > 0.2 and p < 0.05 following Guilford
lines [22]. Correlation between parameters have been further assessed by performing
separated Principal Component Analysis (PCA) for Healthy and pathological groups.

Finally, we have compared the Healthy and pathological groups via a nonparametric
ANCOVA [23] in order to “remove” the (nonlinear) age-dependence of parameters from
the comparison. Significance level was set to p = 0.05. Spearman’s correlation coefficients
computations, PCA and nonparametric ANCOVAs have been performed with R software
(v.3.4.2) – packages corrplot, FactoMineR and sm respectively.

Results

One-way ANOVA showed significant group-dependence for SI, CV and H. Mean and
median results are displayed in Table 2, as well as post-hoc results.

A first graphical exploration of Spearman correlations between parameters in Healthy
group is given in Fig. 2. SI, CV and H are significantly correlated with age in healthy
subjects; detailed values are given in Table 3. As seen in this last table, no correlation
with age is observed in pathological subjects but CV is correlated with the disability
scales in PD and HUNT groups. H also shows a correlation with H&Y scale in PD
group and D is correlated with TFC in HUNT group. Besides correlations shows in
Table 3 we notice a significant negative correlation between CV and D in all groups but
ALS: Healthy ρ = −0.422 (p = 0.001), PD ρ = −0.400 (p = 0.018), HUNT ρ = 0.486
(p = 0.019).

The nonparametric ANCOVA indicates that the behavior of SI versus age is different
between Healthy and HUNT groups. Healthy and ALS show parallel SI trends with age,
shifted by 0.214 seconds upwards in ALS group. In other words, SI of ALS patients are
significantly longer than Healthy individuals of the same age. Moreover, the behaviors of
CV versus age are different between Healthy and HUNT and between Healthy and ALS
groups. The trend of H versus age are parallel in Healthy and ALS groups, but shifted
upwards by 0.176 in the ALS group. Nonparametric ANCOVA was not performed for D
since this parameter was not significantly correlated with age even in the Healthy group.

The PCA displayed in Fig. 3 shows that the set of computed parameters (SI, CV,
D, H) accounts for 70.1% of the total variability of Healthy group only including the
first two dimensions. Moreover the “standard” indices (SI and CV) and the “fractal”
ones (D and H) are rather uncorrelated, showing the relevance of including both kind of
indices in a characterization of SI time series. Similar conclusions can be drawn from
the PCA in the pathological group. We note that CV and SI are negatively (positively)
correlated in Healthy (pathological) group.

Our results are graphically summarized in Fig. 4. Individual results are shown in
the pathological groups while a smoothed trend is shown for Healthy group. The most
obvious observation is that any pathology tends to increase CV from its healthy value.
ALS subjects have a higher SI, as confirmed by the nonparametric ANCOVA.
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Table 2. Results from the one-way ANOVA applied to the computed parameters SI,
CV, H, and D. Means±SD are given for all groups, or medians [Q1-Q3] if normality test
failed. The p−value showing group influence and post-hoc comparisons are shown in the
last lines; significant results are written in bold font.

Group SI (s) CV H D
AD 1.112 [1.080-1.159] 0.015 [0.010-0.023] 0.739±0.145 1.624±0.150
PD 1.082 [1.026-1.150] 0.034 [0.019-0.056] 0.685±0.185 1.576±0.138
HUNT 1.102 [1.045-1.203] 0.072 [0.048-0.096] 0.669±0.155 1.544±0.155
ALS 1.268 [1.204-1.543] 0.061 [0.051-0.066] 0.842±0.176 1.596±0.102
p <0.001 <0.001 <0.001 0.513
AD vs PD NS <0.001 0.661
AD vs HUNT NS <0.001 0.616
AD vs ALS 0.015 <0.001 0.371

Fig 2. Correlation plot of the Healthy subject’s parameters. Each square has an area
proportional to |ρ|, the full square being of unit area.

Discussion

The objective of this study was to recompute linear and nonlinear variability indices in
a uniform way from raw SI time series collected previously in healthy subjects and three
common neurodegenerative diseases. In addition to variability indices computed from
SI, the patient’s level of disability was also correlated with these indices. Measures of
variability in general are more and more frequently considered in gait analysis in patients
with neurodegenerative diseases and their clinical utility makes no doubt. Finding new
ways to improve the sensitivity of these methods is therefore highly relevant. Here
we consider more advanced yet practically simple indexes such as the Hurst exponent
and the Minkowski fractal dimension in an attempt to provide a more accurate clinical
description of patients. Our findings show that these indices indeed probe other features
of SI time series (see Fig. 3) than usual SI average value and coefficient of variation.
Moreover several variability indices were significantly correlated with the disability
scores.

In healthy subjects, the average SI is an increasing function of age from birth to
approximately 20 years and eventually reaches a plateau. This observation could be
partly explained by a mechanical effect of growth: in any pendular model of walk for
example, SI ∼

√
L is expected, with L the lower limb’s length. Our observations are

compatible with well-known results about changes in gait patterns of growing children,
see [24]. While growing, children also learn to control their gait, and the magnitude of SI
fluctuations decreases: CV reaches a minimal value of 0.015 [0.010− 0.023] in AD group.
This value is compatible with the meta-analysis conducted by Moon et al. [25] reporting
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Fig 3. PCA performed on the computed parameters for the Healthy (left panel) and
pathological (right panel) groups. The correlation circles for dimensions 1 and 2 are
shown. The contribution of each variable to the principal axes (contrib) are coded in
colors, with cold colors (turquoise blue) showing low contribution and warm colors
(orange) high contribution.

Table 3. Spearman correlation coefficients between the parameters SI, CV, H, and D
and subject’s ages for all groups, and between the different parameters and disability
scores for PD (H&Y) and HUNT (TFC) groups, and months since first diagnosis
(Onset) for ALS. The p−values are given between parenthesis and significant
correlations are displayed in bold font.

Group vs SI CV H D
Healthy Age 0.499 (0.002) −0.429 (0.002) −0.354 (<0.001) −0.040 (0.336)
PD Age 0.120 (0.484) −0.069 (0.668) −0.029 (0.842) −0.145 (0.342)

H&Y 0.240 (0.054) 0.551 (<0.001) −0.196 (0.727) 0.019 (0.848)
HUNT Age 0.246 (0.285) 0.354 (0.350) −0.117 (0.393) 0.146 (0.615)

TFC −0.282 (0.236) −0.667 (0.011) 0.297 (0.149) −0.457 (0.019)
ALS Age 0.371 (0.224) 0.604 (0.187) 0.264 (0.530) 0.094 (0.736)

Onset 0.325 (0.237) 0.179 (0.305) −0.099 (0.584) −0.157 (0.210)

an average value of 0.024 ± 0.005 for CV in healthy adults. The healthy adults thus
reach an optimal control of their walk; any deviation from this optimal state will result
in an increase of CV. Hurst exponent is found to be equal to 0.739±0.145 in AD group.
Our value is very close to that of 0.75 found in the one-central pattern generator (CPG)
model proposed by Hausdorff et al. [3]. In contrast, the fractal dimension does not
significantly vary with age. As detailed in a previous study of our group [13], we interpret
this parameter as a complexity index of the SI time series, see [8] for a discussion of this
parameter in the case of electrocardiographic time series. According to the maximal
complexity model [16], D should be maximal in healthy subjects, as an indicator of
optimal adaptability to external environment. Here, we observe no significant variation
of D with aging, but we point out the negative correlation obtained between D and CV:
healthy adult reaches minimal CV which corresponds to large values of D, in-line with
the optimal complexity framework.

Maturation of the nervous system may be seen in electromyographical activity while
walking. It has been shown [26,27] that basic patterns exist from birth and become more
and more complex while growing. It can be reasonably assumed that the increase in
complexity of walking muscular activation patterns is associated with a better control of
walk including SI duration, hence with a lower CV. Simpler activation patterns should
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Table 4. Results of nonparametric ANCOVA comparing the Healthy group versus
pathological groups. The null hypothesis of equal behaviors of parameters versus time is
tested in the first line (Equal). The null hypothesis of parallel behaviors of parameters
versus time is tested in the second line (Parallel). In case this last hypothesis is not
rejected, the shift between both groups is given in the third line (Shift). Significant
differences are written in bold font.

SI CV H
Healthy vs PD HUNT ALS PD HUNT ALS PD HUNT ALS
Equal 0.208 <0.001 <0.001 0.095 <0.001 <0.001 0.936 0.663 0.004
Parallel − <0.001 0.324 − 0.132 0.063 − − 0.303
Shift 0.224 s 0.065 0.117

also lead to a more stereotyped and predictable walk. Indeed, we observed larger values
of H in healthy children compared to healthy adults. An interesting comparison with
the biomechanical model of Gates et al. [28] can be made at this stage. The authors
use a pendular model of walk, with initial condition updated at each new step, i.e. at
each heel strike. Sensory and motor noise, regulated by a simple proportional feedback
controller, were incorporated in the model to vary the push-off forces generated by the
trailing leg from step to step. Large H values can be obtained for large values of feedback
control which makes sense since children’s walk are more consciously controlled. CV and
H tend to increase and decrease respectively in healthy old adults with respect to the
adult condition. This may simply be related to physiological aging (sarcopenia, joint
stiffness, etc.), leading to a less efficient control (higher CV) and a general disorganization
of long-range walking variability (smaller H). This goes along the lines of the model
discussed in [28], where an increase in motor noise (a random noise added to the feedback
controller) systematically leads to the behaviors we observe in old adults.

The existence of long-range autocorrelations in SI variability has always been thought
to be rooted in the central nervous system [3], and models involving central pattern
generators (CPGs) have been shown to successfully reproduce such autocorrelations [29].
CPGs are sets of neurons located in the spinal cord and capable of regulating an
automated rhythmic action. Naturally, several studies have focused on variability of
walk in patients suffering from neurodegenerative diseases (for a recent systematic review
on this topic see [25] and references therein). Parkinson’s and Huntington’s diseases
both lead to an alteration of the basal ganglia, and the degeneration of the central
grey nuclei will lead to an alteration in the transmission of data to the CPG via the
mesencephalon [30]. Such perturbation necessarily increases gait variability and CV
with respect to an healthy adult, as confirmed by the nonparametric ANCOVA (Table
4) in Huntington’s case and by the post-hoc results in all pathological cases (Table 2).
However, Parkinson’s and Huntington’s diseases have an opposite clinical manifestation:
Parkinsonian, lacking of dopamine neurons, suffer from hypokinesia while the patient
suffering from Huntington’s disease suffer from hyperkinesia due to a decrease in striatum
activating neurons. The H exponent is indeed significantly lower in the HUNT group
compared to other pathological groups: hyperkinesia induces random perturbation
of the SI, i.e. reduces the regularity or predictability of the lower limb movements.
Consequently, from a clinical perspective, H could reflect the decreased dynamic stability
of walking kinematics and therefore an increased risk of fall observed in patients with
Huntington’s disease [31]. Lyapunov exponents may assess similar features of walking
kinematics [32]. A detailed analysis of our findings revealed that, for patients with
Parkinson’s disease with low H&Y scores (1 and 1.5), H is higher than in healthy subjects
of the same age. It underlines a more predictable or stereotyped walk. In contrast, H
is globally lower in patients with Parkinson’s disease with higher H&Y scores than in
healthy subjects of comparable age. As for Huntington’s patients, walk becomes more
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Fig 4. Comparison of pathological subjects (each subject is labeled by the associated
disability scores for PD and HUNT, and months since onset of disease for ALS) and
Healthy subjects (green solid lines +95% grey confidence intervals) concerning the
evolution of the computed parameters SI, CV, H, and D versus subject’s age. A label
AD is located at the average position of AD group. The Healthy group trends have been
obtained by a second-order polynomial smoothing of individual data (sm package in R).

random. From a clinical perspective, since low H&Y scores are mainly observed at early
stages of the disease, an increase of H value for SI could help in the early diagnosis
of Parkinson’s disease, at a time when it is precisely difficult to diagnose because it is
based solely on the symptoms observed. Our findings are in agreement with a previous
study [33] that reported a negative correlation between modified H&Y score and Hurst
exponents.

In Huntington’s disease, CV is negatively correlated with TFC: the smaller TFC (the
more serious the disability), the larger the CV. A correlation between H and TFC was
found in [4] but not confirmed by our computations. Note however that we calculate
H by using another algorithm. Our results confirm that an alteration of SI variability
is linked to a loss of functional ability in patients suffering from neurodegenerative
pathologies. Would a treatment aiming at improving a patient’s variability, assessed by
CV, H and D, lead to an improvement of his/her functional ability? This question is, to
our knowledge, still to be addressed.

ALS is a progressive degeneration of motor neurons in the cerebral cortex and spinal
cord. It affects the cortical-spinal pathway and motor neurons of the motor units of
skeletal muscle, which will create paralysis of these muscles. A lack of “peripheral” muscle
control logically leads to a higher value of CV, and the muscle paralysis is associated to
a significantly higher value of SI in ALS group. Quite not significant, patients suffering
from ALS also show a higher value of H, exhibiting a more predictable gait pattern.
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Some limitations of our study should be mentioned. First, the length of available
time series were variable which is known to induce potential biases in the estimation
of indexes such as Hurst exponents. To limit the risk of artefacts, we have decided
to truncate time series to 256 points (or close to), which may be a minimal length to
compute accurate variability indices [20]. Even if the duration of a walking session –
around 8 minutes for all the time series of our data set – is a natural parameter, a more
rigorous analysis scheme will be reached by standardizing the number of steps in future
studies. Second, no disability score was available for ALS patients and no correlation
could be calculated with the nonlinear variability indices. Third, Hurst exponents were
only computed by using the Detrended Fluctuation Analysis for the sake of homogeneity.
However, Rescaled Range Analysis has also been used previously [34] and may have been
included also. Finally, other nonlinear analysis tools such as Lyapounov exponents [35]
could have been computed in order to consider their added value. However, to our
knowledge, they would not provide complementary information but would only confirm
how intrinsic properties calculated by other variables such as H vary.

In summary, we have confirmed that healthy adults reach an optimal variability: CV
is minimal, D is maximal, and H reaches an optimal value, typical of chaotic systems [16].
Any deviation from this optimal state, either through aging or pathology, will cause CV
to increase. Hence, CV is a linear relevant index but we recommend to complement it
with nonlinear indices. D is expected to be lower in pathological cases and has been
shown to be negatively correlated to CV. A patient showing both larger CV and D values
than a healthy adult may be considered as pathological too. Moreover, H is sensitive
to H&Y scale in Parkinson’s disease, and significantly lowered in patients suffering
from Huntington’s disease. The assessment of non-linear variability indexes must be
progressively introduced in clinical practice in order to aid clinical assessment, track
disease progression, optimize pharmacological treatment and rehabilitation follow-up in
neurodegenerative patients.
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