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ABSTRACT
 Venous gas emboli (VGE) are often quantified as a marker 

of decompression stress on echocardiograms. Bubble- 

counting has been proposed as an easy to learn method, but 

remains time-consuming, rendering large dataset analysis 

impractical. Computer automation of VGE counting following 

this method has therefore been suggested as a means to 

eliminate rater bias and save time. A necessary step for this 

automation relies on the selection of a frame during late 

ventricular diastole (LVD) for each cardiac cycle of the 

recording. Since electrocardiograms (ECG) are not always 

recorded in field experiments, here we propose a fully 

automated method for LVD frame selection based on regional 

intensity minimization. The algorithm is tested on 20 pre-

viously acquired echocardiography recordings (from the 

original bubble-counting publication), half of which were 

acquired at rest (Rest) and the other half after leg flexions 

(Flex). From the 7,140 frames analyzed, sensitivity was 

found to be 0.913 [95% CI: 0.875-0.940] and specificity 

0.997 [95% CI: 0.996-0.998]. The method’s performance 

is also compared to that of random chance selection and 

found to perform significantly better (p<0.0001). No trend 

in algorithm performance was found with respect to VGE 

counts, and no significant difference was found between Flex 

and Rest (p>0.05). In conclusion, full automation of LVD 

frame selection for the purpose of bubble counting in post-

dive echocardiography has been established with excellent 

accuracy, although we caution that high quality acquisitions 

remain paramount in retaining high reliability.
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INTRODUCTION
Venous gas emboli (VGE) can be detected using 2D echo-
cardiography post-dive and are often used as a metric 
of decompression stress in diving research [1]. It is well 
established that higher VGE grades are associated with 
a higher probability of decompression sickness (DCS), 
but this is not a one-to-one relationship, and VGE are 
an imperfect surrogate endpoint for DCS [2,3]. Previous 
work showed that VGE counts, where VGE are counted 
in a frame with fully open tricuspid valves for each of 
10 consecutive heart cycles and averaged, lowers inter-
rater variability in comparison to conventional grading 
for non-medically trained and relatively inexperienced 
raters [4]. However, bubble counting is a time-consum-
ing process, making it impractical for large datasets 
and becomes particularly problematic when evaluating 
VGE dynamics post-dive [5,6]. These often require fre-
quent measurements from the moment the dive ends 
to more than two hours post-dive and can result in 
hundreds of datasets for a single experiment. Computer-
automation of VGE counting is therefore attractive to 
both standardize and expedite VGE analysis in diving 
research. 
 VGE evaluation as proposed by Germonpré et al. [4] 
lends itself particularly well to computer automation 
because VGE are counted only on open-valve frames. 
The valves can appear discontinuous and difficult to 
distinguish from VGE when not fully open (as opposed 
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to end-diastole/proto-systole on apical four-chamber 
view echocardiography, where they are almost invisible). 
The chance of misclassifying parts of the cardiac valves 
as VGE is therefore minimized, and it is relatively easy 
to count VGE as bright spots against the dark back-
ground of the blood-filled chambers in open-valve 
frames. The time-consuming task of labeling VGE to 
train machine-learning algorithms can therefore be
distributed among many minimally-trained raters. 
 To fully automate this counting method, selection of a 
frame during late ventricular diastole (LVD), when the 
valves are open, is required in each cardiac cycle of the 
recording. Electrocardiography (ECG) signals can be 
used for this purpose: either directly during gated acqui-
sition by setting frames to only be saved during this 
predetermined part of the cardiac cycle, or in post-
processing by using the ECG trace to select the right 
frame. Nevertheless, directly gated acquisitions would 
discard valuable VGE motion data which help identify 
VGE, and in any case ECG data is not always recorded 
in diving field experiments. Depending on ECG brand, 
model, and settings, ECG systems and algorithms can 
also introduce time lags in the ECG recordings 
which can make them more difficult to precisely syn-
chronize with echocardiograph recordings. There-
fore having an automated, and ECG-independent
LVD frame-selection method remains of interest. 
 Here we propose a method to select LVD frames on 
post-dive echocardiograms based on the post-processing 
of the echocardiogram, using changes in average pixel 
intensity inside an automatically selected and fixed re-
gion of interest (ROI) corresponding to the right atrium. 
The method’s performance is evaluated on previously ac-
quired post-dive echocardiography recordings (complete 
anonymized dataset with recordings both at rest and after 
leg flexions of the original bubble counting publication 
[4]). The basic premise of our method relies on the dif-
ferent echogenicity between blood (dark) and tissue 
(brighter) on ultrasound imaging. When the right atrium 
contracts forcing blood out, the fixed ROI on the screen 
now contains more tissue signal and its average intensity 
increases. The periodicity of the contraction and expan-
sion of the heart is therefore reflected in peaks and valleys 
in average intensity, and this is used to locate cardiac cy-
cles and proposed LVD frame selection in the recording.

METHODS
Algorithm for LVD frame selection
A program was developed in MATLAB (R2019b) 
(The MathWorks Inc., Natick, Massachusetts, U.S.) to
 automate the selection of a frame during LVD in each 
cardiac cycle of a recorded post-dive echocardiogram. 
The different processing steps for this LVD frame 
selection algorithm are summarized in Figure 1, and then 
detailed hereafter. A copy of the program is available 
from the corresponding author upon reasonable request. 
 First, the user is prompted to select the video to be an-
alyzed. Once selected, it is converted from RGB to gray-
scale so that its pixel intensity values (which range from 
0, completely black, to 255, completely white) are stored 
in a three-dimensional array with dimensions equal to 
the number of pixels in the lateral and axial directions for 
each frame and the number of frames in the video. The 
average pixel intensity is calculated for each frame, and 
the average intensity time-series signal is smoothed 
(moving average filter of width equal to a quarter of the 
frame rate of the video, rounded up to the closest integer 
value). The maximum of this smoothed average-frame-
intensity-over-time signal is found and the corresponding 
frame index stored. This chosen frame Fmax, an example 
of which is shown in Figure 2A, is then used to estimate 
the center of the right atrium along with its radius. Fmax 
provides a good initial guess to select a frame with closed 
heart valves, since that frame will mostly show cardiac 
tissue (brighter than blood, which appears dark on ultra-
sound). When the valves are closed, the right atrium is 
the most circular object in the heart, and we can take ad-
vantage of this to estimate its radius and center location.
 In order to determine the radius and center of the 
right atrium, Fmax is up-sampled by a factor of two 
in each direction using bicubic interpolation. Then Fmax 
is blurred using a Gaussian filter. This allows for subpixel 
resolution when estimating the center of the right atrium. 
Next, Sobel edge detection is applied to the frame as a 
necessary precursor to performing a circular Hough 
transform (CHT). A mask of the same shape as the conic 
ultrasound view is applied to the edge-detected image 
to prevent the edge between the black background and 
the ultrasound image from being detected. This result 
is seen in Figure 2B. After edge detection has been ap-
plied, a custom-written CHT function is performed in 
order to estimate the center and radius of the right 
atrium. Since MATLAB’s standard CHT function will 
not detect the right atrium due to it not being circular 
enough, a custom function for the CHT was written. This 
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Figure 1
Flowchart describing the key processing steps of the 

late ventricular diastole (LVD) frame selection 
algorithm implemented in MATLAB. 

Abbreviations: LVD – late ventricular diastole; 
RGB: red green blue; ROI: region of interest.

___________________________________________________________________________________

function takes a radius and a number of points per edge pixel and finds 
the center of the most circular feature in the image of the given radius. 
The function finds evenly spaced pixels at a distance equal to the request-
ed radius from each edge-detected pixel based on the number points 

requested. Each pixel found by the func-
tion has its value increased by one over 
the number of points requested. The final 
result is blurred, and the maximum value 
pixel is taken. This is deemed the center 
of the most circular part of the image for 
the selected radius. The transform is per-
formed for multiple radii, an example of 
which is shown in Figure 2C. The over-
all maximum is taken to be the center of 
the right atrium, and its associated radius 
is taken to be the radius of the atrium.
 Next, a ROI is selected in each frame. 
The ROI is a circle centered at the point 
estimated to be the center of the right 
atrium. The radius of the ROI is 10 per-
cent larger than the estimated radius of 
the right atrium. This is done to allow 
the ROI to still encompass the atrium as 
the heart beats since the estimated radi-
us using the CHT above comes from Fmax 
assumed to be a frame where the atrium 
is contracted. The average intensity of all 
pixels inside the ROI is calculated for each 
frame using a circular mask of the same 
dimensions [7]. Again, a moving aver-
age filter with width equal to a quarter of 
the frame rate is applied to this time-se-
ries signal to act as a low pass filter that 
discards any frequencies much greater 
than the heart rate. Peak detection is then 
performed on this averaged signal to esti-
mate the number of cardiac cycles. Next, 
a moving average filter with a width of 
three frames is applied to the original 
signal to act as a low pass filter. This 
much narrower filter allows for higher 
frequencies to pass through compared to 
the filter used in the previous step. 
This minimizes the perturbation of the 
signal during filtering while minimizing 
noise, ultimately improving the robust-
ness of the peak detection. The signal is 
then inverted, and peak detection is 
performed as seen in Figure 3 (the signal 
must be inverted because MATLAB does 
not currently support valley detection). 
Peaks now represent the frames with the 
ROI of the lowest average intensity for 
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Figure 2
Illustration of the key steps to select a ROI from one recording showing:

 A) the frame of maximum intensity, Fmax, used by the algorithm for the determination of right atrium 
 location and radius;

 B) the maximum average intensity frame with Sobel edge detection applied (edges thickened for display);

 C) an example of the modified CHT applied to the edge detected frame B (overlaid in yellow for reference), 
 here showing the CHT for the final radius chosen (as radii values near the size of the right atrium, 
 the intensity in the center of atrium increases because the circles overlap in the same area);

 D) the final ROI selection overlaid on Fmax.

each cardiac cycle. Therefore, the location of the peaks 
corresponds to a rough estimate of the frames that are 
in LVD. Nevertheless, sometimes the actual LVD frame 
is a few frames before or a few frames after. By averag-
ing the rough estimate of LVD frames (peaks in Figure 
3) we get a “reference frame” for what an LVD frame 
looks like. Then for each detected peak location we de-
termine the cross-correlation coefficient between the 

averaged reference frame and a window of frames with 
a width one quarter the frame rate centered at the peak 
location. The frame with the highest correlation coeffi-
cient is taken to be the frame in LVD during that cardiac 
cycle. Once this has been performed for each peak loca-
tion, the frames in LVD are output. These frames should 
all be LVD frames as opposed to a frame with the 
heart valves closed.
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Figure 3
Inverted average of ROI pixel intensity over each frame in the selected video (blue line), 
and after low-pass filtering (black dashed line). Peak detection is shown (red triangles) 

and an example frame of a local minimum (close valve frame in B) and maximum 
(open valve frame in A) displayed. Peaks are averaged to create a “reference frame” 

(C) used to finalize the selection of each LVD frame by maximizing the cross-correlation 
value between the reference frame and the frames around each detected peak.
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Algorithm performance assessment
The algorithm was tested on all 20 echocardiography 
videos from the Germonpré et al. bubble counting 
paper, acquired on with GE 3S-RS sector array probe 
on a Vivid-i ultrasound system (GE Healthcare, UK) at 
30 frames per second [4]. These data are all post-dive 
acquisitions containing VGE and 10 are recorded at rest 
(Rest) while the other 10 were recorded after leg flex-
ions (Flex), both types of recording being routinely used 
in diving research. MATLAB was used to extract each 
individual frame of each echocardiogram into a sepa-
rate folder to allow frame-by-frame scrolling. A human 
rater (author VP) identified the frame index corre-
sponding to the start and end of each cardiac cycle 
(also visually confirmed on the ECG trace on each re-
cording) and assessed algorithm-labeled LVD frames 

for accuracy in the following manner. Each LVD frame 
identified by the algorithm for each recording was then 
evaluated by looking at whether the tricuspid valves 
were fully open, but also by situating its corresponding 
frame index with respect to all labeled cardiac cycles 
to ensure that one and only one LVD per cardiac cycle 
was identified. Consequently, the following cases were 
possible for each cardiac cycle (of total frames n) of 
each echocardiogram:
(a)  The algorithm picked only one LVD frame within 
this cycle and it was indeed an open-valve frame: this 
1 frame is a true positive and the rest of the frames (n-1) 
are true negatives;
(b)  The algorithm did not identify an LVD frame within 
this cycle: 1 false negative (since one LVD should have 
been identified) and the rest of the frames (n-1) are true 
negatives;

____________________________________________________________________________________________________________________________________________________________________

____________________________________________________________________________________________________________________________________________________________________
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(c)  The algorithm picked only 1 LVD frame within this 
cycle, but the valves were not fully open: one false posi-
tive (the frame picked should not have been selected), 
1 false negative (one other frame of the cycle should 
have been picked as an LVD) and another n-2 true nega-
tives (the remainder of the frames are true negatives); or
(d)  The algorithm picked m LVD frames within this 
cycle, where m>1:
 a. At least 1 of the m picks was indeed an open-valve 
frame: one true positive, (m-1) false-positives (since 
only one LVD should be identified per cardiac cycle) 
and the remainder (n-m) frames are true negatives
 b. None of the m picks were an open-valve frame: 
m false-positives, 1 false negative (since one LVD should 
be identified per cardiac cycle) and the remainder 
(n-m-1) frames are true negatives.
 The algorithm’s performance was then quantified using 
the following methods. Sensitivity (equation 1) and speci-
ficity (equation 2) in picking LVD frames were calculated 
using the total number of true negatives, true posi-
tives, false negatives and false positives found. Their 
associated 95% confidence intervals are also computed 
using the Wilson-Brown method for calculating confi-
dence intervals for proportions in Prism 8 (GraphPad 
Software, Inc., La Jolla, California, U.S.).

 Note that the bubble counting method requires only 
one “open-valve” frame (LVD) for each cardiac cycle, but 
there are typically multiple frames during each cardiac 
cycle that are valid possible picks (in our experience 
with echocardiography recorded at 30 frames per second 
this is about four frames in each cycle of about 25 
frames). However, once one LVD frame is chosen for 
each cardiac cycle, all remaining frames pertaining to 
the same cardiac cycle need to be rejected by the algo-
rithm. The sensitivity and specificity alone cannot 
capture this, so we also calculated the probability of 
randomly choosing LVD frames to compare our algo-
rithm’s performance to chance, as detailed below.
 The probability prec of randomly choosing c frames for 
a given echocardiogram containing N total frames, so 
that each pick is an LVD frame from a different cardiac 
cycle is:
 

 True negatives
Specificity = _______________________ (equation 2)
  True negatives + False positives    

 True positives
Sensitivity = _______________________ (equation 1)
  True positives + False negatives    

where l is the number of valid possible LVD in each 
cardiac cycle. A simple way to compare our algorithm’s 
performance to chance is therefore to compare this with 
prec over 20 trials. To do so, we calculate the cumulative 
binomial probability P (X ≥ x) with x being the number 
of echocardiograms for which our algorithm correct-
ly picks one and only one LVD frame in each cardiac 
cycle without mistakes (out of 20 trials since we have 
20 videos in total) and set p<0.05 set as the threshold 
for significance.
 Finally, we assessed whether algorithm performance 
varied between Rest and Flex recordings, or depended 
on the amount of VGE detectable in each recording. 
Statistical analyses were performed in Prism 8 (Graph-
Pad Software, Inc., La Jolla, California, U.S.) and sta-
tistical significance levels were set a priori at p<0.05. 
The specificity and sensitivity were calculated sepa-
rately for each echocardiogram in the same manner 
as previously described. Specificities between the Rest 
and Flex groups were compared using a Mann-Whitney 
U test after negative normality test, and the same pro-
cedure was repeated for sensitivity comparison. The 
relationship between VGE counts and algorithm per-
formance was assessed by calculating the correlation 
between VGE counts and sensitivity, or specificity, 
respectively. Spearman correlation coefficients (r) and 
p-values are reported. Data are presented as mean ± 
standard deviation unless otherwise stated. 

RESULTS
The automated LVD frame selection algorithm was 
used on all 20 echocardiography videos (7,140 frames 
and 236 cardiac cycles in total). Recordings contained 
an average of 357 frames and 14.8 cardiac cycles (each 
consisting of 24 frames on average). From the 7,140 
frames analyzed, sensitivity was found to be 0.913 
[95% CI: 0.875-0.940] and specificity 0.997 [95% CI: 
0.996-0.998], with true positive, true negative, false
positive and false negative totals detailed in Table 1.
 Using the average number of frames (N=357), cycles 
(c=15) and overestimating the number of possible cor-
rect LVD picks to be half of each cardiac cycle (l=12 out 
of an average 24 frames per cycle), equation (3) gives 
prec=2.0 ×10-9. From this, we find that the probability of 
observing six or more echocardiograms for which the al-

 c! × (N-c) ! × l c   
prec = ________________ (equation 3)

 N !   
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________________________________________________________________________________________________

Table 1
  identified as ‘LVD’ identified as ‘other’ total 
________________________________________________________________________________________________

 LVD  frames 271 (true positives)   20 (false-negatives) 291
______________________________________________________________________________________________

 other frames  26 (false-positives) 6823 (true negatives) 6849
______________________________________________________________________________________________

 total 297 6843 7140
________________________________________________________________________________________________

Summary of the algorithm’s classification results 
across all 20 videos against human assessment

________________________________________________________________________________________________

gorithm correctly picks all LVD frames from the different cardiac cycles 
without mistakes (as our algorithm did) being due to chance, cumulative 
binomial probability P (X ≥ 6), is p<0.00001. Thus, our algorithm performs 
significantly better than chance. Note that this estimated chance per-
formance is grossly overestimated already since in reality the number of 
correct picks per cardiac cycle would be less than half, and it is calculated 
with the a priori knowledge of the total number of cardiac cycles in the 
recording which the algorithm does not have (we set 15 picks, whereas 
the algorithm is not restricted to picking only as many frames as there are 
cardiac cycles, it calculates how many cycles it thinks a recording has).
 The specificity was 0.997 ± 0.003 for Rest recordings and 0.997 ± 0.006 
for Flex recordings. The sensitivity was 0.947 ± 0.103 for Rest recordings 
and 0.881 ± 0.171 for Flex recordings. No significant difference was found 
between Flex and Rest for either specificity or sensitivity (both p>0.05) 
and algorithm performance did not depend on VGE counts (r=-0.028 
with p=0.91 for sensitivity, and r=0.269 with p=0.25 for specificity).

DISCUSSION
The LVD frame selection algorithm proposed here does not rely on any 
user input and, as such, is not prone to user bias. It is fully automated 
from the echocardiography data alone (without necessitating an ECG 
trace) and could therefore be implemented on data from any ultrasound 
machine. This is important since not all field research experiments in-
clude ECG recordings currently. Since the Germonpré et al. counting 
method for VGE assessment selects LVD frames for VGE counting, this 
automated frame selection algorithm is a necessary component toward 
the full automation of the method. This in turn would allow fast and 
unbiased automated analysis of large datasets of post-dive echocardio-
grams. The LVD algorithm takes about eight seconds to run on average 
(Windows 10.0.18362 Build 18362, Intel(R) Core(TM) i5-3210M CPU
@ 2.50GHz, 2501 MHz, 2 Core(s), 4 Logical Processor(s), 16 GB RAM).
 Overall, the algorithm seemed to perform well for the purpose of LVD 
frame identification in the context of VGE counting. It was significantly 
better than chance at correctly identifying cardiac cycles to pick only one 
LVD frame for each. Over the 236 cardiac cycles tested in total, specificity 
and sensitivity exceeded 0.9, and averages from Rest and Flex recordings 
separately did not differ and remained high (at or above 0.88). The algo-
rithm’s performance did not depend on the amount of VGE present. 

In the 20 post-dive echocardiograms 
used for validation, VGE ranged from 
0 to 11.2 (mean 3.38), suggesting that 
the algorithm is robust over this wide 
range (grade 0 to grade 4 on the Eftedal 
and Brubakk scale). It is, however, pos-
sible that our intensity-based method 
would have more difficulty with grade 
5 recording since the high number 
of VGE may add to the chamber 
brightness (otherwise dark) and 
influence the ability to correctly esti-
mate the cardiac cycles.
 The algorithm relies on peak detec-
tion to identify possible LVD frames 
from each cardiac cycle. This is inher-
ently more difficult when a full cycle 
is not present, as is sometimes the case 
in the first and last cycle of a recording. 
It is therefore interesting to note that 
from the 16/236 cycles that it failed to 
choose a frame for (missed those cycles, 
case (b) described in the methods), six 
were from either the first or last cycle 
of a video. Additionally, it misidenti-
fied an LVD frame in a 10/236 cycles, 
of which three were again from the 
first or last cardiac cycle of a video. 
This could be mitigated in the future 
by purposefully ignoring the first and 
last peak detections for the purposes of 
bubble counting (the bubble counting 
method as described in [4] requires 
10 consecutive heart cycles).
 Although the recordings used in this 
study used a 30-Hz frame rate, the al-
gorithm is adaptive to the frame rate by 
design and performance should remain 
unchanged as long as the frame rate is 
high enough to adequately sample the 
heart rate, while retaining at least one 
LVD frame per cardiac cycle and ro-
bustness to acquisition issues. To in-
vestigate this, we down-sampled the 
frames of all 20 videos and found no 
difference in sensitivity or specificity 
at 15 Hz compared to 30 Hz (p>0.05), 
but a significant difference in 
both sensitivity and specificity at 
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7.5 Hz compared to 30 Hz (both p<0.0001) (Fried-
man test for paired video comparison after negative 
normality test, with Dunn’s multiple comparison post-
test). Echocardiograms recorded at or above 15 frames 
per second would therefore be adequately analyzed and, 
in practice, the frame rate for echocardiography is 
always above those values clinically.  
 Finally, it is important to note that the algorithm is 
particularly sensitive to motion of the heart both in, 
and out, of the imaging plane. This is because the ROI 
is selected based on a single frame. This could be cor-
rected by performing the ROI selection process on each 
frame in the video, but at the cost of a substantial in-
crease in the processing time without parallelization of 
the code. Flex recordings in particular are more difficult 
to acquire without motion artifacts and sensitivity was 
lower for those even though the trend was not signifi-
cant. A crucial aspect for accurate LVD selection (and 
VGE counting), whether by a human rater or algorithm, 
remains echocardiography acquisition quality.
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CONCLUSIONS
In conclusion, we have developed a fully-automated 
algorithm for the selection of LVD frames from post-
dive 2D echocardiograms, as part of our larger aim to fully 
automate VGE counting. The algorithm takes advan-
tage of the relatively circular shape of the right atrium 
to define a ROI around it. Changes in the ROI’s average 
pixel intensity due to the periodic contraction and relax-
ation of the atrium are then used to identify cardiac cycles, 
create a reference open-valve frame and propose LVD 
frames for each cardiac cycle by comparing candidates 
to that reference. The algorithm performs well on the 20 
post-dive echocardiograms tested (total 7,140 frames and 
236 cardiac cycles), although we caution that high-qual-
ity acquisitions remain paramount in retaining high 
accuracy.
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