• Open Access
    • Comment cela fonctionne?
    • Ouvrir une session
    • Contact

    Voir le document

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Voir le document 
    • Accueil de LUCK
    • HENALLUX
    • FoRS
    • Sciences Et Techniques
    • Voir le document
    • Accueil de LUCK
    • HENALLUX
    • FoRS
    • Sciences Et Techniques
    • Voir le document
    Voir/Ouvrir
    William Dumoulin, Nicolas Thiry and Rim Slama. 2021. Real Time Hand Gesture Recognition in Industry. In 2021 3rd International Conference on Video, Signal and Image Processing (VSIP 2021), November 19-21, 2021, Wuhan, China. ACM, New York, NY, USA, 11 Pages. (995.4Ko)
    Date
    2021
    Auteur
    Dumoulin, W.
    Thiry, N.
    Slama, R.
    Metadata
    Afficher la notice complète
    Partage ça

    Real Time Hand Gesture Recognition in Industry

    Résumé
    With the 4th industrial revolution and the increased use of cobots in the industries comes many opportunities for new generation control panels. In this article, we proposed to develop a deep learning model to recognize in real time 10 different gestures that can be used to interact with a cobot. We proposed a new dataset containing gestures that can be used in an industrial context. The videos were taken from a computer webcam and then processed to remove the noise created by the background by isolating the movement of the gray scale images. We proposed to extract the spatio-temporal features by the combination of 3D convolution and LSTM layers. We also proposed a real time method to recognize our gestures, the frames are captured continuously and fed to the model to get a prediction every 2.4 seconds. Our experimental results show for 8 out of 10 gestures, a recognition rate of more than 90%. Furthermore, an interface was created to test our method in real time and to add new classes of gestures to be recognized by our model.

    Parcourir

    Tout LUCKCommunautés & CollectionsAuteurTitreDate de publicationSujetType de documentTitre de périodiqueThématiqueCette collectionAuteurTitreDate de publicationSujetType de documentTitre de périodiqueThématique

    Mon compte

    Ouvrir une sessionS'inscrire

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Plan du site

    • Open Access
    • Comment cela fonctionne?
    • Mon compte

    Contact

    • L’équipe de LUCK
    • Synhera
    • CIC