Afficher la notice abrégée

Real Time Hand Gesture Recognition in Industry

dc.rights.licenseCC0en_US
dc.contributor.authorDumoulin, W.
dc.contributor.authorThiry, N.
dc.contributor.authorSlama, R.
dc.date.accessioned2022-03-23T11:26:25Z
dc.date.available2022-03-23T11:26:25Z
dc.date.issued2021
dc.identifier.urihttps://luck.synhera.be/handle/123456789/1607
dc.identifier.doihttps://doi.org/10.1145/3503961.3503962en_US
dc.description.abstractWith the 4th industrial revolution and the increased use of cobots in the industries comes many opportunities for new generation control panels. In this article, we proposed to develop a deep learning model to recognize in real time 10 different gestures that can be used to interact with a cobot. We proposed a new dataset containing gestures that can be used in an industrial context. The videos were taken from a computer webcam and then processed to remove the noise created by the background by isolating the movement of the gray scale images. We proposed to extract the spatio-temporal features by the combination of 3D convolution and LSTM layers. We also proposed a real time method to recognize our gestures, the frames are captured continuously and fed to the model to get a prediction every 2.4 seconds. Our experimental results show for 8 out of 10 gestures, a recognition rate of more than 90%. Furthermore, an interface was created to test our method in real time and to add new classes of gestures to be recognized by our model.en_US
dc.description.sponsorshipEURen_US
dc.language.isoENen_US
dc.publisherAssociation for Computing Machineryen_US
dc.relation.ispartofVSIP 2021, November 19–21, 2021, Wuhan, Chinaen_US
dc.relation.isreferencedbyhttps://dl.acm.org/doi/fullHtml/10.1145/3503961.3503962en_US
dc.rights.urihttps://dl.acm.org/doi/proceedings/10.1145/3503961en_US
dc.subjectGesture recognitionen_US
dc.subjectDeep learningen_US
dc.titleReal Time Hand Gesture Recognition in Industryen_US
dc.typeArticle scientifiqueen_US
synhera.classificationIngénierie, informatique & technologie>>Automatisationen_US
synhera.institutionHENALLUXen_US
synhera.stakeholders.fundInterreg Grande-Régionen_US
synhera.cost.total0en_US
synhera.cost.apc0en_US
synhera.cost.comp0en_US
synhera.cost.acccomp0en_US
dc.description.versionOuien_US
dc.rights.holderHenalluxen_US


Fichier(s) constituant ce document

Thumbnail

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée