• Open Access
    • Comment cela fonctionne?
    • Ouvrir une session
    • Contact

    Voir le document

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Voir le document 
    • Accueil de LUCK
    • HE Louvain en Hainaut
    • CEREF
    • Santé
    • Voir le document
    • Accueil de LUCK
    • HE Louvain en Hainaut
    • CEREF
    • Santé
    • Voir le document
    Voir/Ouvrir
    sensors-20-03207.pdf (1.873Mo)
    Date
    2020-06-05
    Auteur
    BUISSERET, Fabien
    Catinus, Louis
    Grenard, Remi
    JOJCZYK, Laurent
    Fievez, Dylan
    Barvaux, Vincent
    DIERICK, Frédéric
    Metadata
    Afficher la notice complète
    Partage ça

    Timed Up and Go and Six-Minute Walking Tests with Wearable Inertial Sensor: One Step Further for the Prediction of the Risk of Fall in Elderly Nursing Home People

    Résumé
    Assessing the risk of fall in elderly people is a difficult challenge for clinicians. Since falls represent one of the first causes of death in such people, numerous clinical tests have been created and validated over the past 30 years to ascertain the risk of falls. More recently, the developments of low-cost motion capture sensors have facilitated observations of gait differences between fallers and nonfallers. The aim of this study is twofold. First, to design a method combining clinical tests and motion capture sensors in order to optimize the prediction of the risk of fall. Second to assess the ability of artificial intelligence to predict risk of fall from sensor raw data only. Seventy-three nursing home residents over the age of 65 underwent the Timed Up and Go (TUG) and six-minute walking tests equipped with a home-designed wearable Inertial Measurement Unit during two sets of measurements at a six-month interval. Observed falls during that interval enabled us to divide residents into two categories: fallers and nonfallers. We show that the TUG test results coupled to gait variability indicators, measured during a six-minute walking test, improve (from 68% to 76%) the accuracy of risk of fall’s prediction at six months. In addition, we show that an artificial intelligence algorithm trained on the sensor raw data of 57 participants reveals an accuracy of 75% on the remaining 16 participants.

    Parcourir

    Tout LUCKCommunautés & CollectionsAuteurTitreDate de publicationSujetType de documentTitre de périodiqueThématiqueCette collectionAuteurTitreDate de publicationSujetType de documentTitre de périodiqueThématique

    Mon compte

    Ouvrir une sessionS'inscrire

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Plan du site

    • Open Access
    • Comment cela fonctionne?
    • Mon compte

    Contact

    • L’équipe de LUCK
    • Synhera
    • CIC