Afficher la notice abrégée

Dominant vectors of nonnegative matrices : application to information extraction in large graphs

dc.rights.licenseCC5en_US
dc.contributor.advisorBlondel, Vincent
dc.contributor.advisorVan Dooren, Paul
dc.contributor.authorNINOVE, Laure
dc.date.accessioned2021-09-14T14:13:17Z
dc.date.available2021-09-14T14:13:17Z
dc.date.issued2008-01-21
dc.identifier.otherUCL - Université Catholique de Louvain & FSA/INMA - Département d'ingénierie mathématiqueen_US
dc.identifier.urihttps://luck.synhera.be/handle/123456789/1142
dc.identifier.doihttp://hdl.handle.net/2078.1/6224en_US
dc.description.abstractObjects such as documents, people, words or utilities, that are related in some way, for instance by citations, friendship, appearance in definitions or physical connections, may be conveniently represented using graphs or networks. An increasing number of such relational databases, as for instance theWorldWideWeb, digital libraries, social networking web sites or phone calls logs, are available. Relevant information may be hidden in these networks. A user may for instance need to get authority web pages on a particular topic or a list of similar documents from a digital library, or to determine communities of friends from a social networking site or a phone calls log. Unfortunately, extracting this information may not be easy. This thesis is devoted to the study of problems related to information extraction in large graphs with the help of dominant vectors of nonnegative matrices. The graph structure is indeed very useful to retrieve information from a relational database. The correspondence between nonnegative matrices and graphs makes Perron–Frobenius methods a powerful tool for the analysis of networks. In a first part, we analyze the fixed points of a normalized affine iteration used by a database matching algorithm. Then, we consider questions related to PageRank, a ranking method of the web pages based on a random surfer model and used by the well known web search engine Google. In a second part, we study optimal linkage strategies for a web master who wants to maximize the average PageRank score of a web site. Finally, the third part is devoted to the study of a nonlinear variant of PageRank. The simple model that we propose takes into account the mutual influence between web ranking and web surfing.en_US
dc.description.sponsorshipOTHen_US
dc.format.mediumOTHen_US
dc.language.isoENen_US
dc.publisherUCL - Université Catholique de Louvainen_US
dc.rights.urihttps://dial.uclouvain.be/pr/boreal/fr/node/23849en_US
dc.subjectMathématiquesen_US
dc.subjectVecteursen_US
dc.subjectMatrices non négativesen_US
dc.subjectGraphiquesen_US
dc.subjectValeur propreen_US
dc.subject.enPageRanken_US
dc.subject.enInformation extractionen_US
dc.subject.enNetworksen_US
dc.subject.enGraphsen_US
dc.subject.enConesen_US
dc.subject.enNonlinear iterationsen_US
dc.subject.enPerron-Frobeniusen_US
dc.subject.enEigenvalue problemsen_US
dc.subject.enDominant vectorsen_US
dc.subject.enNonnegative matricesen_US
dc.titleDominant vectors of nonnegative matrices : application to information extraction in large graphsen_US
dc.typeTFEen_US
synhera.classificationPhysique, chimie, mathématiques & sciences de la terre>>Mathématiquesen_US
synhera.institutionHE Léonard de Vincien_US
synhera.otherinstitutionUCL - Université Catholique de Louvainen_US
dc.rights.holderUCL - Université Catholique de Louvainen_US


Fichier(s) constituant ce document

Thumbnail

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée