• Open Access
    • Comment cela fonctionne?
    • Ouvrir une session
    • Contact

    Voir le document

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Voir le document 
    • Accueil de LUCK
    • HE Vinci
    • SCIENCES ET TECHNIQUES
    • Voir le document
    • Accueil de LUCK
    • HE Vinci
    • SCIENCES ET TECHNIQUES
    • Voir le document
    Voir/Ouvrir
    Thèse complète (2.188Mo)
    Date
    2008-01-21
    Auteur
    NINOVE, Laure
    Metadata
    Afficher la notice complète
    Partage ça

    Dominant vectors of nonnegative matrices : application to information extraction in large graphs

    Résumé
    Objects such as documents, people, words or utilities, that are related in some way, for instance by citations, friendship, appearance in definitions or physical connections, may be conveniently represented using graphs or networks. An increasing number of such relational databases, as for instance theWorldWideWeb, digital libraries, social networking web sites or phone calls logs, are available. Relevant information may be hidden in these networks. A user may for instance need to get authority web pages on a particular topic or a list of similar documents from a digital library, or to determine communities of friends from a social networking site or a phone calls log. Unfortunately, extracting this information may not be easy. This thesis is devoted to the study of problems related to information extraction in large graphs with the help of dominant vectors of nonnegative matrices. The graph structure is indeed very useful to retrieve information from a relational database. The correspondence between nonnegative matrices and graphs makes Perron–Frobenius methods a powerful tool for the analysis of networks. In a first part, we analyze the fixed points of a normalized affine iteration used by a database matching algorithm. Then, we consider questions related to PageRank, a ranking method of the web pages based on a random surfer model and used by the well known web search engine Google. In a second part, we study optimal linkage strategies for a web master who wants to maximize the average PageRank score of a web site. Finally, the third part is devoted to the study of a nonlinear variant of PageRank. The simple model that we propose takes into account the mutual influence between web ranking and web surfing.

    Parcourir

    Tout LUCKCommunautés & CollectionsAuteurTitreDate de publicationSujetType de documentTitre de périodiqueThématiqueCette collectionAuteurTitreDate de publicationSujetType de documentTitre de périodiqueThématique

    Mon compte

    Ouvrir une sessionS'inscrire

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Plan du site

    • Open Access
    • Comment cela fonctionne?
    • Mon compte

    Contact

    • L’équipe de LUCK
    • Synhera
    • CIC