dc.rights.license | OTH | en_US |
dc.contributor.author | Vincent Lemort | |
dc.contributor.author | Paulus, Nicolas | |
dc.date.accessioned | 2024-03-20T12:01:52Z | |
dc.date.available | 2024-03-20T12:01:52Z | |
dc.date.issued | 2023-09-10 | |
dc.identifier.issn | 0196-8904 | en_US |
dc.identifier.uri | https://luck.synhera.be/handle/123456789/2622 | |
dc.identifier.doi | 10.1016/j.enconman.2023.117634 | en_US |
dc.description.abstract | The energy transition brings focus on cogeneration systems, even at residential levels. One of the latter systems consists in a proton exchange membrane fuel cell (PEMFC) combined with a gas condensing boiler and a 220L domestic hot water tank. The system, fed by natural gas, is designed to provide the heat demands of residential houses and to participate locally in the electrical produc-tion thanks to the PEMFC of nominal constant power of 0.75kWel (and 1.1kWth). The boiler, sized for peak heat demands, can be chosen between four rated power versions from 11.4 to 30.8kWth. The machine is never electrically driven. This study has developed daily (and monthly) performance models of the system based on field-test results of two machines installed and monitored in Belgium for the whole year 2020. All models only require daily (or monthly) heat demands of the building as inputs but more elaborated (and accurate) models have been established considering operating temperatures and the demonstrated ability of the machine to modulate its heat rate output in real onsite applications. Finally, this paper has demonstrated that daily PEMFC load factor (its daily electrical production) has a significant influence on the daily performance and therefore on the goodness of fit of the models. Unfortunately, the demonstrated PEMFC load factor is unexpectedly low for the monitored dwellings, probably due to the high level of complexity of the hybridization between the components of the system. | en_US |
dc.description.abstractfr | La transition énergétique met en lumière les systèmes de cogénération, même au niveau résidentiel. L'un de ces systèmes consiste en une pile à combustible à membrane échangeuse de protons (PEMFC) combinée à une chaudière à condensation à gaz et un réservoir d'eau chaude domestique de 220L. Alimenté par le gaz naturel, le système est conçu pour répondre aux besoins en chauffage des maisons résidentielles et pour participer localement à la production électrique grâce à la PEMFC de puissance nominale constante de 0,75kWel (et 1,1kWth). La chaudière, dimensionnée pour les pics de demande de chaleur, peut être choisie parmi quatre versions de puissance nominale allant de 11,4 à 30,8kWth. La machine n'est jamais actionnée électriquement. Cette étude a développé des modèles de performance quotidiens (et mensuels) du système basés sur les résultats des tests sur le terrain de deux machines installées et surveillées en Belgique pendant toute l'année 2020. Tous les modèles nécessitent uniquement les demandes de chaleur quotidiennes (ou mensuelles) du bâtiment comme entrées, mais des modèles plus élaborés (et précis) ont été établis en considérant les températures de fonctionnement et la capacité démontrée de la machine à moduler sa production de chaleur en conditions réelles sur site. Enfin, cet article a démontré que le facteur de charge quotidien de la PEMFC (sa production électrique quotidienne) a une influence significative sur la performance quotidienne et donc sur la qualité de l'ajustement des modèles. Malheureusement, le facteur de charge de la PEMFC démontré est inexplicablement bas pour les logements surveillés, probablement en raison du niveau élevé de complexité de l'hybridation entre les composants du système. | en_US |
dc.description.abstracten | The energy transition brings focus on cogeneration systems, even at residential levels. One of the latter systems consists in a proton exchange membrane fuel cell (PEMFC) combined with a gas condensing boiler and a 220L domestic hot water tank. The system, fed by natural gas, is designed to provide the heat demands of residential houses and to participate locally in the electrical produc-tion thanks to the PEMFC of nominal constant power of 0.75kWel (and 1.1kWth). The boiler, sized for peak heat demands, can be chosen between four rated power versions from 11.4 to 30.8kWth. The machine is never electrically driven. This study has developed daily (and monthly) performance models of the system based on field-test results of two machines installed and monitored in Belgium for the whole year 2020. All models only require daily (or monthly) heat demands of the building as inputs but more elaborated (and accurate) models have been established considering operating temperatures and the demonstrated ability of the machine to modulate its heat rate output in real onsite applications. Finally, this paper has demonstrated that daily PEMFC load factor (its daily electrical production) has a significant influence on the daily performance and therefore on the goodness of fit of the models. Unfortunately, the demonstrated PEMFC load factor is unexpectedly low for the monitored dwellings, probably due to the high level of complexity of the hybridization between the components of the system. | en_US |
dc.description.sponsorship | OTH | en_US |
dc.language.iso | EN | en_US |
dc.publisher | Elsevier | en_US |
dc.relation.ispartof | Energy Conversion and Management | en_US |
dc.relation.isreferencedby | 10.1016/j.ijhydene.2023.12.240 | en_US |
dc.relation.isreferencedby | 10.52202/069564-0104 | en_US |
dc.relation.isreferencedby | 10.1088/1755-1315/1185/1/012013 | en_US |
dc.relation.isreferencedby | 10.11581/dtu.00000267 | en_US |
dc.relation.isreferencedby | 10.34641/clima.2022.176 | en_US |
dc.relation.isreferencedby | 10.25855/SFT2022-119 | en_US |
dc.rights.uri | https://www.sciencedirect.com/science/article/pii/S0196890423009809?via%3Dihub | en_US |
dc.subject | fuel cell | en_US |
dc.subject | micro-cogeneration | en_US |
dc.subject | modelling | en_US |
dc.subject | efficiency | en_US |
dc.subject | hybridization | en_US |
dc.subject | goodness of fit | en_US |
dc.subject.fr | pile à combustible | en_US |
dc.subject.fr | micro-cogeneration | en_US |
dc.subject.fr | modélisation | en_US |
dc.subject.fr | rendement | en_US |
dc.subject.fr | hybridation | en_US |
dc.subject.fr | adéquation du modèle | en_US |
dc.subject.en | fuel cell | en_US |
dc.subject.en | micro-cogeneration | en_US |
dc.subject.en | modelling | en_US |
dc.subject.en | efficiency | en_US |
dc.subject.en | hybridization | en_US |
dc.subject.en | goodness of fit | en_US |
dc.title | Field-test performance models of a residential micro-cogeneration system based on the hybridization of a proton exchange membrane fuel cell and a gas condensing boiler | en_US |
dc.title.en | Field-test performance models of a residential micro-cogeneration system based on the hybridization of a proton exchange membrane fuel cell and a gas condensing boiler | en_US |
dc.title.fr | Modèles de performance en field-test d'un système de micro-cogénération résidentiel basé sur l'hybridation d'une pile à combustible à membrane échangeuse de protons et d'une chaudière à condensation à gaz | en_US |
dc.type | Article scientifique | en_US |
synhera.classification | Ingénierie, informatique & technologie | en_US |
synhera.classification | Physique, chimie, mathématiques & sciences de la terre | en_US |
synhera.institution | HE de la Province de Liège | en_US |
synhera.otherinstitution | Université de Liège | en_US |
synhera.stakeholders.fund | Projet soutenu financièrement (partiellement) par Gas.be | en_US |
synhera.cost.total | 0 | en_US |
synhera.cost.apc | 0 | en_US |
synhera.cost.comp | 0 | en_US |
synhera.cost.acccomp | 0 | en_US |
dc.description.version | Oui | en_US |
dc.rights.holder | Eslevier | en_US |
synhera.identifier.orcidwork | 142072852 | |