dc.rights.license | CC1 | en_US |
dc.contributor.author | Paulus, Nicolas | |
dc.date.accessioned | 2024-05-09T19:11:25Z | |
dc.date.available | 2024-05-09T19:11:25Z | |
dc.date.issued | 2024-04-23 | |
dc.identifier.issn | 1364-0321 | en_US |
dc.identifier.uri | https://luck.synhera.be/handle/123456789/2649 | |
dc.identifier.doi | 10.1016/j.rser.2024.114428 | en_US |
dc.description.abstract | Traditional climate strategies focus on long-term emissions targets, neglecting cumulative CO2 emissions and often limiting their scope to territorial emissions. Additionally, individual citizens struggle to connect with community targets. This study addresses these issues by computing a comprehensive carbon footprint pathway that, as a main contribution, can be easily personalized and associated with common carbon footprint calculators. This approach innovatively leverages inverted “S-shaped” patterns based on logistic functions that, unlike common linear patterns, have been documented as relevant for diffusion mechanisms of social or ecological transformations. One challenge lies in efficiently aligning the carbon footprint figures, expressed in CO2eq, with IPCC's +2 °C carbon budgets, expressed in CO2-only. This work first retrieves the current share of CO2-only footprint and then defines two mitigation pathways: one focusing solely on CO2 emissions and one addressing residual GHGs. Except for initial and final emission levels, both targeted pathways are defined by the same logistic function, based on the assumed intrinsic link between CO2 and the other GHGs. As final targets, the CO2-only pathway considers the common net-zero emission goal while the second pathway considers a level of 1 tCO2eq/year per capita of unmitigated non-CO2 emissions, in alignment with IPCC's latest assumptions and anticipated population growth. Besides the new +2 °C compatible suggested pathways, developing this method for France and Wallonia has also revealed that they should reach territorial (nature-based) carbon uptake of at least three times their current levels, necessitating deep land-use changes in their policies (implementing intensive urban vegetation, alternative agriculture techniques, etc). | en_US |
dc.description.abstractfr | Les stratégies climatiques traditionnelles se concentrent sur des objectifs d'émissions à long terme, négligeant les émissions cumulatives de CO2 et limitant souvent leur portée aux émissions territoriales. De plus, il est difficile pour les citoyens de se sentir connectés aux objectifs communautaires. Cette étude aborde ces problèmes en calculant un chemin d'empreinte carbone complet qui, en tant que contribution principale, peut être facilement personnalisé et associé aux calculateurs d'empreinte carbone courants. Cette approche utilise de manière innovante des modèles en forme de "S inversé" basés sur des fonctions logistiques qui, contrairement aux modèles linéaires usuels, ont été démontrés pertinents pour les mécanismes de diffusion des transformations sociales ou écologiques. Un des chellenges de cette étude réside dans l'alignement des chiffres d'empreinte carbone, exprimés en CO2eq, avec les budgets carbone de +2 °C du GIEC, exprimés uniquement en CO2. Ce travail commence par récupérer la part actuelle de l'empreinte en CO2 seul, puis définit deux trajectoires d'atténuation : une se concentrant uniquement sur les émissions de CO2 et une autre traitant des GES résiduels. À l'exception des niveaux d'émission initiaux et finaux, les deux voies ciblées sont définies par la même fonction logistique, basée sur le lien intrinsèque supposé entre le CO2 et les autres GES. Comme objectifs finaux, la trajectoire de réduction en CO2 seul considère l'objectif de neutralité en CO2 tandis que la deuxième trajectoire envisage un niveau de 1 tCO2eq/an par habitant d'émissions non-CO2 non atténuées, en alignement avec les dernières hypothèses du GIEC et les projections de croissance démographique. Outre les nouvelles trajectoires suggérées compatibles avec +2 °C, le développement de cette méthode pour la France et la Wallonie a également révélé qu'elles devraient atteindre une absorption de carbone territoriale (basée sur la nature) d'au moins trois fois leurs niveaux actuels, nécessitant des changements profonds dans l'utilisation des terres dans leurs politiques associées (mise en œuvre d'une végétation urbaine intensive, techniques d'agriculture alternative, etc). | en_US |
dc.description.abstracten | Traditional climate strategies focus on long-term emissions targets, neglecting cumulative CO2 emissions and often limiting their scope to territorial emissions. Additionally, individual citizens struggle to connect with community targets. This study addresses these issues by computing a comprehensive carbon footprint pathway that, as a main contribution, can be easily personalized and associated with common carbon footprint calculators. This approach innovatively leverages inverted “S-shaped” patterns based on logistic functions that, unlike common linear patterns, have been documented as relevant for diffusion mechanisms of social or ecological transformations. One challenge lies in efficiently aligning the carbon footprint figures, expressed in CO2eq, with IPCC's +2 °C carbon budgets, expressed in CO2-only. This work first retrieves the current share of CO2-only footprint and then defines two mitigation pathways: one focusing solely on CO2 emissions and one addressing residual GHGs. Except for initial and final emission levels, both targeted pathways are defined by the same logistic function, based on the assumed intrinsic link between CO2 and the other GHGs. As final targets, the CO2-only pathway considers the common net-zero emission goal while the second pathway considers a level of 1 tCO2eq/year per capita of unmitigated non-CO2 emissions, in alignment with IPCC's latest assumptions and anticipated population growth. Besides the new +2 °C compatible suggested pathways, developing this method for France and Wallonia has also revealed that they should reach territorial (nature-based) carbon uptake of at least three times their current levels, necessitating deep land-use changes in their policies (implementing intensive urban vegetation, alternative agriculture techniques, etc). | en_US |
dc.description.sponsorship | None | en_US |
dc.language.iso | EN | en_US |
dc.publisher | Elsevier | en_US |
dc.relation.ispartof | Renewable and Sustainable Energy Reviews | en_US |
dc.relation.isreferencedby | 10.2139/ssrn.4800979 | en_US |
dc.relation.isreferencedby | 10.1088/1755-1315/1185/1/012013 | en_US |
dc.relation.isreferencedby | 10.1088/1755-1315/1185/1/012014 | en_US |
dc.relation.isreferencedby | 10.1016/j.jenvman.2024.121017 | en_US |
dc.relation.isreferencedby | 10.2139/ssrn.4802509 | en_US |
dc.relation.isreferencedby | 10.2139/ssrn.4811842 | en_US |
dc.rights.uri | https://www.sciencedirect.com/science/article/abs/pii/S1364032124001515?via%3Dihub | en_US |
dc.subject | carbon budget | en_US |
dc.subject | carbon footprint | en_US |
dc.subject | greenhouse gases | en_US |
dc.subject | territorial absorption | en_US |
dc.subject | nationally determined contributions | en_US |
dc.subject | imported emissions | en_US |
dc.subject | carbon uptake | en_US |
dc.subject | energy transition | en_US |
dc.subject | mitigation pathways | en_US |
dc.subject | SDG | en_US |
dc.subject | climate action | en_US |
dc.subject.fr | budget carbone | en_US |
dc.subject.fr | empreinte carbone | en_US |
dc.subject.fr | GES | en_US |
dc.subject.fr | absorption territoriale | en_US |
dc.subject.fr | contributions déterminées au niveau national | en_US |
dc.subject.fr | émissions importées | en_US |
dc.subject.fr | absorption de carbone | en_US |
dc.subject.fr | transition énergétique | en_US |
dc.subject.fr | trajectoire de réduction | en_US |
dc.subject.fr | ODD | en_US |
dc.subject.fr | action climatique | en_US |
dc.subject.en | carbon budget | en_US |
dc.subject.en | carbon footprint | en_US |
dc.subject.en | greenhouse gases | en_US |
dc.subject.en | territorial absorption | en_US |
dc.subject.en | nationally determined contributions | en_US |
dc.subject.en | imported emissions | en_US |
dc.subject.en | carbon uptake | en_US |
dc.subject.en | energy transition | en_US |
dc.subject.en | mitigation pathways | en_US |
dc.subject.en | SDG | en_US |
dc.subject.en | climate action | en_US |
dc.title | Developing individual carbon footprint reduction pathways from carbon budgets: Examples with Wallonia and France | en_US |
dc.title.en | Developing individual carbon footprint reduction pathways from carbon budgets: Examples with Wallonia and France | en_US |
dc.title.fr | Développement de trajectoires de réduction d'empreinte carbone individuelle à partir de budgets carbone : Exemples avec la Wallonie et la France | en_US |
dc.type | Article scientifique | en_US |
synhera.classification | Ingénierie, informatique & technologie | en_US |
synhera.classification | Physique, chimie, mathématiques & sciences de la terre | en_US |
synhera.institution | HE de la Province de Liège | en_US |
synhera.cost.total | 0 | en_US |
synhera.cost.apc | 0 | en_US |
synhera.cost.comp | 0 | en_US |
synhera.cost.acccomp | 0 | en_US |
dc.description.version | Oui | en_US |
dc.rights.holder | Eslevier | en_US |
synhera.identifier.orcidwork | 158237639 | |