dc.rights.license | CC6 | en_US |
dc.contributor.author | Paulus, Nicolas | |
dc.contributor.author | Lemort, Vincent | |
dc.date.accessioned | 2024-10-16T15:51:13Z | |
dc.date.available | 2024-10-16T15:51:13Z | |
dc.date.issued | 2024-05-07 | |
dc.identifier.issn | 0301-4797 | en_US |
dc.identifier.uri | https://luck.synhera.be/handle/123456789/2825 | |
dc.identifier.doi | 10.1016/j.jenvman.2024.121017 | en_US |
dc.description.abstract | Energy transition currently brings focus on fuel cell micro-combined heat and power (mCHP) systems for residential uses. The two main technologies already commercialized are the Proton Exchange Membrane Fuel Cells (PEMFCs) and Solid Oxide Fuel Cells (SOFCs). The pollutant emissions of one system of each technology have been tested with a portable probe both in laboratory and field-test configurations. In this paper, the nitrogen oxides (NOx), sulphur dioxide (SO2), and carbon monoxide (CO) emission levels are compared to other combustion technologies such as a recent Euro 6 diesel automotive vehicle, a classical gas condensing boiler, and a gas absorption heat pump. At last, a method of converting the concentration of pollutants (in ppm) measured by the sensors into pollutant intensity per unit of energy (in mg/kWh) is documented and reported. This allows for comparing the pollutant emissions levels with relevant literature, especially other studies conducted with other measuring sensors. Both tested residential fuel cell technologies fed by natural gas can be considered clean regarding SO2 and NOx emissions. The CO emissions can be considered quite low for the tested SOFC and even nil for the tested PEMFC. The biggest issue of natural gas fuel cell technologies still lies in the carbon dioxide (CO2) emissions associated with the fossil fuel they consume. The gas absorption heat pump however shows worse NOx and CO levels than the classical gas condensing boiler. At last, this study illustrates that the high level of hybridization between a fuel cell and a gas boiler may be responsible for unexpected ON/OFF cycling behaviours and therefore prevent both sub-systems from operating as optimally and reliably as they would have as standalone units. | en_US |
dc.description.abstractfr | La transition énergétique met actuellement l'accent sur les systèmes de micro-cogénération à pile à combustible (mCHP) pour les applications résidentielles. Les deux principales technologies déjà commercialisées sont les piles à combustible à membrane échangeuse de protons (PEMFC) et les piles à combustible à oxyde solide (SOFC). Les émissions de polluants d'un système de chaque technologie ont été testées à l'aide d'une sonde portable, à la fois en laboratoire et sur le terrain. Dans cet article, les niveaux d'émission de dioxyde d'azote (NOx), de dioxyde de soufre (SO2) et de monoxyde de carbone (CO) sont comparés à ceux d'autres technologies de combustion, telles qu'un véhicule diesel Euro 6 récent, une chaudière classique à condensation au gaz et une pompe à chaleur à absorption au gaz. Enfin, une méthode de conversion des concentrations de polluants (en ppm) mesurées par les capteurs en intensité de polluants par unité d'énergie (en mg/kWh) est documentée et rapportée. Cela permet de comparer les niveaux d'émission de polluants avec ceux de la littérature, en particulier d'autres études menées avec d'autres capteurs de mesure. Les deux technologies de piles à combustible résidentielles testées, alimentées par du gaz naturel, peuvent être considérées comme propres en ce qui concerne les émissions de SO2 et de NOx. Les émissions de CO peuvent être considérées comme très faibles pour la SOFC testée et même nulles pour la PEMFC testée. Le principal problème des technologies de piles à combustible au gaz naturel reste toutefois les émissions de dioxyde de carbone (CO2) associées au combustible fossile qu'elles consomment. En revanche, la pompe à chaleur à absorption de gaz présente des niveaux de NOx et de CO plus élevés que la chaudière à condensation classique au gaz. Enfin, cette étude montre que le haut niveau d'hybridation entre une pile à combustible et une chaudière à gaz peut entraîner des comportements inattendus de cycles marche/arrêt et, par conséquent, empêcher les deux sous-systèmes de fonctionner de manière optimale et fiable comme ils le feraient en tant qu'unités autonomes. | en_US |
dc.description.abstracten | Energy transition currently brings focus on fuel cell micro-combined heat and power (mCHP) systems for residential uses. The two main technologies already commercialized are the Proton Exchange Membrane Fuel Cells (PEMFCs) and Solid Oxide Fuel Cells (SOFCs). The pollutant emissions of one system of each technology have been tested with a portable probe both in laboratory and field-test configurations. In this paper, the nitrogen oxides (NOx), sulphur dioxide (SO2), and carbon monoxide (CO) emission levels are compared to other combustion technologies such as a recent Euro 6 diesel automotive vehicle, a classical gas condensing boiler, and a gas absorption heat pump. At last, a method of converting the concentration of pollutants (in ppm) measured by the sensors into pollutant intensity per unit of energy (in mg/kWh) is documented and reported. This allows for comparing the pollutant emissions levels with relevant literature, especially other studies conducted with other measuring sensors. Both tested residential fuel cell technologies fed by natural gas can be considered clean regarding SO2 and NOx emissions. The CO emissions can be considered quite low for the tested SOFC and even nil for the tested PEMFC. The biggest issue of natural gas fuel cell technologies still lies in the carbon dioxide (CO2) emissions associated with the fossil fuel they consume. The gas absorption heat pump however shows worse NOx and CO levels than the classical gas condensing boiler. At last, this study illustrates that the high level of hybridization between a fuel cell and a gas boiler may be responsible for unexpected ON/OFF cycling behaviours and therefore prevent both sub-systems from operating as optimally and reliably as they would have as standalone units. | en_US |
dc.description.sponsorship | OTH | en_US |
dc.language.iso | EN | en_US |
dc.publisher | Elsevier | en_US |
dc.relation.ispartof | Journal of Environmental Management | en_US |
dc.relation.isreferencedby | 10.1016/j.rser.2024.114428 | en_US |
dc.relation.isreferencedby | 10.1080/15567036.2024.2400305 | en_US |
dc.relation.isreferencedby | Paulus, N. (2024). The role of residential micro-cogeneration fuel cells in the energy transition - A case study in Belgium [Doctoral thesis, ULiège - Université de Liège]. ORBi-University of Liège. https://orbi.uliege.be/handle/2268/316575 | en_US |
dc.relation.isreferencedby | 10.2139/ssrn.4800979 | en_US |
dc.relation.isreferencedby | 10.21494/ISTE.OP.2024.1211 | en_US |
dc.relation.isreferencedby | 10.2139/ssrn.4802509 | en_US |
dc.rights.uri | https://linkinghub.elsevier.com/retrieve/pii/S030147972401003X | en_US |
dc.subject | SO2 | en_US |
dc.subject | Fuel cell | en_US |
dc.subject | Emission factor | en_US |
dc.subject | NOx | en_US |
dc.subject | Pollutant emissions | en_US |
dc.subject | CO | en_US |
dc.subject.fr | SO2 | en_US |
dc.subject.fr | pile à combustible | en_US |
dc.subject.fr | facteur d'émissions | en_US |
dc.subject.fr | NOx | en_US |
dc.subject.fr | CO | en_US |
dc.subject.fr | émissions de polluants | en_US |
dc.subject.en | SO2 | en_US |
dc.subject.en | fuel cell | en_US |
dc.subject.en | emission factor | en_US |
dc.subject.en | pollutant emissions | en_US |
dc.subject.en | NOx | en_US |
dc.subject.en | CO | en_US |
dc.title | Experimental assessment of pollutant emissions from residential fuel cells and comparative benchmark analysis | en_US |
dc.title.en | Experimental assessment of pollutant emissions from residential fuel cells and comparative benchmark analysis | en_US |
dc.title.fr | Évaluation expérimentale des émissions de polluants des piles à combustible résidentielles et analyse comparative de référence | en_US |
dc.type | Article scientifique | en_US |
synhera.classification | Ingénierie, informatique & technologie | en_US |
synhera.classification | Physique, chimie, mathématiques & sciences de la terre | en_US |
synhera.institution | HE de la Province de Liège | en_US |
synhera.otherinstitution | Université de Liège | en_US |
synhera.stakeholders.fund | Projet soutenu financièrement (partiellement) par Gas.be | en_US |
synhera.cost.total | 0 | en_US |
synhera.cost.apc | 0 | en_US |
synhera.cost.comp | 0 | en_US |
synhera.cost.acccomp | 0 | en_US |
dc.description.version | Oui | en_US |
dc.rights.holder | Elsevier | en_US |
synhera.identifier.orcidwork | 159130173 | |