dc.rights.license | CC6 | en_US |
dc.contributor.author | Nicolas Paulus | |
dc.date.accessioned | 2025-03-11T08:04:33Z | |
dc.date.available | 2025-03-11T08:04:33Z | |
dc.date.issued | 2025-01-30 | |
dc.identifier.issn | 2516-1083 | en_US |
dc.identifier.uri | https://luck.synhera.be/handle/123456789/2998 | |
dc.identifier.doi | 10.1088/2516-1083/ada109 | en_US |
dc.description.abstract | There is a plethora of fuel cell technologies, many of which hold great promise in terms of their decarbonisation potential, which this paper aims to explore. In fact, this paper is primarily based on the only two existing technologies on the market, polymer exchange membrane fuel cells and solid oxide fuel cells (SOFCs). Unfortunately, these commercial systems mainly use natural gas as primary fuel due to its cost and practicality (easy transport and storage, existing infrastructures, etc). Using Belgium as a case study, this paper shows that their GHG mitigation potential remains rather insignificant compared to the average individual carbon footprint if their fuel is not decarbonised. Even so, their mitigation potential would still be far from sufficient, and other measures, including behavioural changes, would still need to be implemented. Nevertheless, some emerging fuel cell technologies, such as direct carbon SOFCs (DC-SOFCs) or direct formic acid fuel cells, offer the possibility of facilitating pure CO2 capture at their anode outlet, thus allowing for potential negative emissions. Using a case study of the electricity demand of an average Belgian home (with two adults) supplied by an efficient biomass-fuelled DC-SOFC, this paper shows that these negative emissions could be up to about 4 tCO2eq yr−1 . By comparison, the IPCC's Sixth Assessment Report estimated the emissions footprint that could never be mitigated, even with future net-zero CO2 emissions, to be 1 tCO2eq yr−1 per capita, implying that climate neutrality will require similar levels of carbon sequestration. In populous Western countries, natural carbon sinks are unlikely to be sufficient, and the potential negative emissions of emerging fuel cell technologies will be welcome. | en_US |
dc.description.abstractfr | Il existe une pléthore de technologies de piles à combustible, dont beaucoup présentent un grand potentiel en matière de décarbonisation, un aspect que cet article vise à explorer. En effet, cet article se concentre principalement sur les deux seules technologies actuellement disponibles sur le marché : les piles à combustible à membrane échangeuse de protons et les piles à combustible à oxyde solide (SOFC). Malheureusement, ces systèmes commerciaux utilisent principalement du gaz naturel comme combustible principal en raison de son coût et de sa praticité (transport et stockage faciles, infrastructures existantes, etc.).
En prenant la Belgique comme étude de cas, cet article montre que leur potentiel de réduction des émissions de gaz à effet de serre reste relativement insignifiant par rapport à l’empreinte carbone individuelle moyenne si leur combustible n’est pas décarboné. Même dans ce cas, leur potentiel de réduction des émissions resterait insuffisant, et d’autres mesures, notamment des changements de comportement, devraient encore être mises en œuvre.
Néanmoins, certaines technologies émergentes de piles à combustible, telles que les piles à combustible à oxyde solide à carbone direct (DC-SOFC) ou les piles à combustible à acide formique direct, offrent la possibilité de capturer du CO₂ pur à la sortie de leur anode, permettant ainsi d’envisager des émissions négatives.
En utilisant comme étude de cas la demande en électricité d’un foyer belge moyen (composé de deux adultes) alimenté par une pile DC-SOFC efficace fonctionnant à la biomasse, cet article montre que ces émissions négatives pourraient atteindre environ 4 tCO₂eq par an. À titre de comparaison, le sixième rapport d’évaluation du GIEC a estimé que l’empreinte carbone des émissions qui ne pourront jamais être atténuées, même avec des émissions nettes nulles de CO₂ à l’avenir, s’élève à 1 tCO₂eq par an et par habitant, ce qui implique que la neutralité climatique nécessitera des niveaux similaires de séquestration du carbone.
Dans les pays occidentaux densément peuplés, les puits de carbone naturels risquent d’être insuffisants, et le potentiel d’émissions négatives des technologies émergentes de piles à combustible sera le bienvenu. | en_US |
dc.description.abstracten | There is a plethora of fuel cell technologies, many of which hold great promise in terms of their decarbonisation potential, which this paper aims to explore. In fact, this paper is primarily based on the only two existing technologies on the market, polymer exchange membrane fuel cells and solid oxide fuel cells (SOFCs). Unfortunately, these commercial systems mainly use natural gas as primary fuel due to its cost and practicality (easy transport and storage, existing infrastructures, etc). Using Belgium as a case study, this paper shows that their GHG mitigation potential remains rather insignificant compared to the average individual carbon footprint if their fuel is not decarbonised. Even so, their mitigation potential would still be far from sufficient, and other measures, including behavioural changes, would still need to be implemented. Nevertheless, some emerging fuel cell technologies, such as direct carbon SOFCs (DC-SOFCs) or direct formic acid fuel cells, offer the possibility of facilitating pure CO2 capture at their anode outlet, thus allowing for potential negative emissions. Using a case study of the electricity demand of an average Belgian home (with two adults) supplied by an efficient biomass-fuelled DC-SOFC, this paper shows that these negative emissions could be up to about 4 tCO2eq yr−1 . By comparison, the IPCC's Sixth Assessment Report estimated the emissions footprint that could never be mitigated, even with future net-zero CO2 emissions, to be 1 tCO2eq yr−1 per capita, implying that climate neutrality will require similar levels of carbon sequestration. In populous Western countries, natural carbon sinks are unlikely to be sufficient, and the potential negative emissions of emerging fuel cell technologies will be welcome. | en_US |
dc.description.sponsorship | None | en_US |
dc.language.iso | EN | en_US |
dc.publisher | IOP Publishing | en_US |
dc.relation.ispartof | Progress in Energy | en_US |
dc.relation.isreferencedby | 10.21494/ISTE.OP.2024.1211 | en_US |
dc.relation.isreferencedby | 10.1016/j.jenvman.2024.121017 | en_US |
dc.rights.uri | https://iopscience.iop.org/article/10.1088/2516-1083/ada109 | en_US |
dc.subject | carbon budget | en_US |
dc.subject | DCSOFC | en_US |
dc.subject | fuel cell | en_US |
dc.subject | negative emissions | en_US |
dc.subject | CCU | en_US |
dc.subject | CCS | en_US |
dc.subject | carbon absorption | en_US |
dc.subject.fr | budget carbone | en_US |
dc.subject.fr | DCSOFC | en_US |
dc.subject.fr | pile à combustible | en_US |
dc.subject.fr | émissions négatives | en_US |
dc.subject.fr | CCU | en_US |
dc.subject.fr | CCS | en_US |
dc.subject.fr | capture de carbone | en_US |
dc.subject.en | carbon budget | en_US |
dc.subject.en | DCSOFC | en_US |
dc.subject.en | fuel cell | en_US |
dc.subject.en | negative emissions | en_US |
dc.subject.en | CCU | en_US |
dc.subject.en | CCS | en_US |
dc.subject.en | carbon absorption | en_US |
dc.title | Decarbonization potential of fuel cell technologies in micro-cogeneration applications: spotlight on SOFCs in a Belgian case study | en_US |
dc.title.en | Decarbonization potential of fuel cell technologies in micro-cogeneration applications: spotlight on SOFCs in a Belgian case study | en_US |
dc.title.fr | Potentiel de décarbonisation des technologies à pile à combustible dans les applications de micro-cogénération : focus sur les SOFC dans une étude de cas belge | en_US |
dc.type | Article scientifique | en_US |
synhera.classification | Ingénierie, informatique & technologie | en_US |
synhera.institution | HE de la Province de Liège | en_US |
synhera.otherinstitution | Université de Liège | en_US |
synhera.cost.total | 0 | en_US |
synhera.cost.apc | 0 | en_US |
synhera.cost.comp | 0 | en_US |
synhera.cost.acccomp | 0 | en_US |
dc.description.version | Oui | en_US |
dc.rights.holder | IOP Publishing | en_US |
synhera.identifier.orcidwork | 174067280 | |