dc.rights.license | CC1 | en_US |
dc.contributor.author | Paulus, Nicolas | |
dc.contributor.author | Lemort, Vincent | |
dc.date.accessioned | 2025-03-11T08:04:57Z | |
dc.date.available | 2025-03-11T08:04:57Z | |
dc.date.issued | 2022-05-15 | |
dc.identifier.uri | https://luck.synhera.be/handle/123456789/2999 | |
dc.identifier.doi | 10.34641/CLIMA.2022.176 | en_US |
dc.description.abstract | Much needed energy transition currently brings focus on micro-combined heat and power (mCHP) systems for residential uses, especially on low-capacity fuel cells (about 1 kWel) because it has been reported that they allow for increased CO2 savings per kWel compared to engine-based mCHP’s [1]. One of those (already commercialized), is a Proton Exchange Membrane Fuel Cell (PEMFC) system hybridized with a conventional gas condensing boiler. It is fed by natural gas; it is designed to cover all the heat demands of residential houses as well as to participate locally in the electrical production. Thanks to high integration levels, it combines a PEMFC of nominal constant power of 0.75kWel and 1.1kWth, a 220L DHW (Domestic Hot Water) tank and a condensing gas boiler, mainly used for peak heat demands, that designed to provide up to 30.8kWth. The financial incentive representing a major factor in the investor’s decision towards such a technological change, focus will indeed be brought on supply and demand cover factors since they are directly linked to how much the citizens are individually billed and since they constitute actual and future unavoidable keys in the energy transition, as more and more intermittent renewable energies will be integrated to the energetic mix. This study is monitoring two of those installations in residential houses in Belgium, arbitrary chosen, for the whole year 2020. Sampling time of the monitoring hardware is between 2 and 5 minutes but it has been chosen to analyse the grid impacts factors according to average daily values (along with their seasonal trend and yearly figures). This paper has established yearly supply cover factors between 34 and 36%, which are believed to be higher (based upon literature) that what typical photovoltaics (PV) power plants would have allowed. It unfortunately remains lower than the 37.46% “prosumer” limit considered in the tariffication of Wallonia PV installations [2]. On the other hand, this paper has established yearly demand cover factors of 25 and 33%. | en_US |
dc.description.abstractfr | La transition énergétique, plus que jamais nécessaire, met actuellement l’accent sur les systèmes de micro-cogénération (mCHP) destinés aux usages résidentiels, en particulier sur les piles à combustible de faible capacité (environ 1 kWel). En effet, il a été rapporté qu'elles permettent une économie de CO₂ plus importante par kWel comparé aux systèmes de micro-cogénération basés sur des moteurs [1]. L’un de ces systèmes, déjà commercialisé, est une pile à combustible à membrane échangeuse de protons (PEMFC) hybridée avec une chaudière à condensation au gaz conventionnelle. Alimenté en gaz naturel, ce système est conçu pour couvrir l’ensemble des besoins en chaleur des habitations résidentielles tout en contribuant localement à la production d’électricité.
Grâce à un haut niveau d’intégration, il combine une PEMFC d’une puissance nominale constante de 0,75 kWel et 1,1 kWth, un réservoir d’eau chaude sanitaire (DHW) de 220 litres et une chaudière à condensation au gaz, principalement utilisée pour répondre aux pics de demande thermique, et capable de fournir jusqu’à 30,8 kWth.
L’incitation financière étant un facteur majeur dans la décision d’investissement vers ce type de technologie, l’attention est portée sur les coefficients d’autoconsommation et d’autosuffisance, car ils sont directement liés au montant facturé aux citoyens et constituent des leviers incontournables de la transition énergétique, à mesure que les énergies renouvelables intermittentes s’intègrent de plus en plus au mix énergétique.
Cette étude suit deux installations résidentielles en Belgique, choisies arbitrairement, sur l’ensemble de l’année 2020. Le matériel de monitoring effectue des relevés entre 2 et 5 minutes, mais l’analyse des facteurs d’impact sur le réseau a été réalisée sur la base de moyennes journalières (ainsi que leurs tendances saisonnières et leurs valeurs annuelles).
Les résultats établissent des coefficients annuels d’autosuffisance compris entre 34 et 36 %, ce qui est supposé être supérieur (d’après la littérature) à ce que permettraient des installations photovoltaïques (PV) classiques. Cependant, cette valeur reste inférieure à la limite de 37,46 % appliquée aux « prosumers » dans la tarification des installations PV en Wallonie [2].
Par ailleurs, cette étude établit des coefficients annuels d’autoconsommation compris entre 25 et 33 % | en_US |
dc.description.abstracten | Much needed energy transition currently brings focus on micro-combined heat and power (mCHP) systems for residential uses, especially on low-capacity fuel cells (about 1 kWel) because it has been reported that they allow for increased CO2 savings per kWel compared to engine-based mCHP’s [1]. One of those (already commercialized), is a Proton Exchange Membrane Fuel Cell (PEMFC) system hybridized with a conventional gas condensing boiler. It is fed by natural gas; it is designed to cover all the heat demands of residential houses as well as to participate locally in the electrical production. Thanks to high integration levels, it combines a PEMFC of nominal constant power of 0.75kWel and 1.1kWth, a 220L DHW (Domestic Hot Water) tank and a condensing gas boiler, mainly used for peak heat demands, that designed to provide up to 30.8kWth. The financial incentive representing a major factor in the investor’s decision towards such a technological change, focus will indeed be brought on supply and demand cover factors since they are directly linked to how much the citizens are individually billed and since they constitute actual and future unavoidable keys in the energy transition, as more and more intermittent renewable energies will be integrated to the energetic mix. This study is monitoring two of those installations in residential houses in Belgium, arbitrary chosen, for the whole year 2020. Sampling time of the monitoring hardware is between 2 and 5 minutes but it has been chosen to analyse the grid impacts factors according to average daily values (along with their seasonal trend and yearly figures). This paper has established yearly supply cover factors between 34 and 36%, which are believed to be higher (based upon literature) that what typical photovoltaics (PV) power plants would have allowed. It unfortunately remains lower than the 37.46% “prosumer” limit considered in the tariffication of Wallonia PV installations [2]. On the other hand, this paper has established yearly demand cover factors of 25 and 33%. | en_US |
dc.description.sponsorship | OTH | en_US |
dc.language.iso | EN | en_US |
dc.publisher | REHVA | en_US |
dc.relation.isreferencedby | 10.1016/j.enconman.2023.117634 | en_US |
dc.relation.isreferencedby | 10.1016/j.jenvman.2024.121017 | en_US |
dc.relation.isreferencedby | 10.11581/dtu.00000267 | en_US |
dc.relation.isreferencedby | 10.2139/ssrn.4811842 | en_US |
dc.relation.isreferencedby | 10.52202/069564-0104 | en_US |
dc.relation.isreferencedby | 10.25855/SFT2022-119 | en_US |
dc.relation.isreferencedby | 10.52202/069564-0056 | en_US |
dc.relation.isreferencedby | 10.1088/1755-1315/1185/1/012014 | en_US |
dc.relation.isreferencedby | 10.21494/ISTE.OP.2024.1211 | en_US |
dc.relation.isreferencedby | Paulus, N. (2024). The role of residential micro-cogeneration fuel cells in the energy transition - A case study in Belgium [Doctoral thesis, ULiège - Université de Liège]. ORBi-University of Liège. https://orbi.uliege.be/handle/2268/316575 | en_US |
dc.relation.isreferencedby | 10.1088/2516-1083/ada109 | en_US |
dc.rights.uri | https://proceedings.open.tudelft.nl/clima2022/article/view/176 | en_US |
dc.subject | Grid-impact factors | en_US |
dc.subject | PEMFC | en_US |
dc.subject | CHP | en_US |
dc.subject | cogeneration | en_US |
dc.subject | fuel cell | en_US |
dc.subject | supply cover factor | en_US |
dc.subject | demand cover factor | en_US |
dc.subject.fr | coefficient d’autoconsommation | en_US |
dc.subject.fr | coefficients d’autosuffisance | en_US |
dc.subject.fr | PEMFC | en_US |
dc.subject.fr | cogéneration | en_US |
dc.subject.fr | pile à combustible | en_US |
dc.subject.en | Grid-impact factors | en_US |
dc.subject.en | PEMFC | en_US |
dc.subject.en | CHP | en_US |
dc.subject.en | cogeneration | en_US |
dc.subject.en | fuel cell | en_US |
dc.subject.en | supply cover factor | en_US |
dc.subject.en | demand cover factor | en_US |
dc.title | Grid-impact factors of field-tested residential Proton Exchange Membrane Fuel Cell systems | en_US |
dc.title.en | Grid-impact factors of field-tested residential Proton Exchange Membrane Fuel Cell systems | en_US |
dc.title.fr | Coefficients d'autoconsommation et d'autosuffisance des piles à combustible à membrane échangeuse de protons utilisées sur site en tant que systèmes de cogénération résidentiels dans des applications réelles | en_US |
dc.type | Acte de conférence ou de colloque | en_US |
synhera.classification | Ingénierie, informatique & technologie | en_US |
synhera.institution | HE de la Province de Liège | en_US |
synhera.otherinstitution | Université de Liège | en_US |
synhera.stakeholders.fund | Gas.be | en_US |
dc.description.version | Oui | en_US |
dc.rights.holder | REHVA | en_US |
synhera.identifier.orcidwork | 113477875 | |