Afficher la notice abrégée

Grid-impact factors of field-tested residential Proton Exchange Membrane Fuel Cell systems

dc.rights.licenseCC1en_US
dc.contributor.authorPaulus, Nicolas
dc.contributor.authorLemort, Vincent
dc.date.accessioned2025-03-11T08:04:57Z
dc.date.available2025-03-11T08:04:57Z
dc.date.issued2022-05-15
dc.identifier.urihttps://luck.synhera.be/handle/123456789/2999
dc.identifier.doi10.34641/CLIMA.2022.176en_US
dc.description.abstractMuch needed energy transition currently brings focus on micro-combined heat and power (mCHP) systems for residential uses, especially on low-capacity fuel cells (about 1 kWel) because it has been reported that they allow for increased CO2 savings per kWel compared to engine-based mCHP’s [1]. One of those (already commercialized), is a Proton Exchange Membrane Fuel Cell (PEMFC) system hybridized with a conventional gas condensing boiler. It is fed by natural gas; it is designed to cover all the heat demands of residential houses as well as to participate locally in the electrical production. Thanks to high integration levels, it combines a PEMFC of nominal constant power of 0.75kWel and 1.1kWth, a 220L DHW (Domestic Hot Water) tank and a condensing gas boiler, mainly used for peak heat demands, that designed to provide up to 30.8kWth. The financial incentive representing a major factor in the investor’s decision towards such a technological change, focus will indeed be brought on supply and demand cover factors since they are directly linked to how much the citizens are individually billed and since they constitute actual and future unavoidable keys in the energy transition, as more and more intermittent renewable energies will be integrated to the energetic mix. This study is monitoring two of those installations in residential houses in Belgium, arbitrary chosen, for the whole year 2020. Sampling time of the monitoring hardware is between 2 and 5 minutes but it has been chosen to analyse the grid impacts factors according to average daily values (along with their seasonal trend and yearly figures). This paper has established yearly supply cover factors between 34 and 36%, which are believed to be higher (based upon literature) that what typical photovoltaics (PV) power plants would have allowed. It unfortunately remains lower than the 37.46% “prosumer” limit considered in the tariffication of Wallonia PV installations [2]. On the other hand, this paper has established yearly demand cover factors of 25 and 33%.en_US
dc.description.abstractfrLa transition énergétique, plus que jamais nécessaire, met actuellement l’accent sur les systèmes de micro-cogénération (mCHP) destinés aux usages résidentiels, en particulier sur les piles à combustible de faible capacité (environ 1 kWel). En effet, il a été rapporté qu'elles permettent une économie de CO₂ plus importante par kWel comparé aux systèmes de micro-cogénération basés sur des moteurs [1]. L’un de ces systèmes, déjà commercialisé, est une pile à combustible à membrane échangeuse de protons (PEMFC) hybridée avec une chaudière à condensation au gaz conventionnelle. Alimenté en gaz naturel, ce système est conçu pour couvrir l’ensemble des besoins en chaleur des habitations résidentielles tout en contribuant localement à la production d’électricité. Grâce à un haut niveau d’intégration, il combine une PEMFC d’une puissance nominale constante de 0,75 kWel et 1,1 kWth, un réservoir d’eau chaude sanitaire (DHW) de 220 litres et une chaudière à condensation au gaz, principalement utilisée pour répondre aux pics de demande thermique, et capable de fournir jusqu’à 30,8 kWth. L’incitation financière étant un facteur majeur dans la décision d’investissement vers ce type de technologie, l’attention est portée sur les coefficients d’autoconsommation et d’autosuffisance, car ils sont directement liés au montant facturé aux citoyens et constituent des leviers incontournables de la transition énergétique, à mesure que les énergies renouvelables intermittentes s’intègrent de plus en plus au mix énergétique. Cette étude suit deux installations résidentielles en Belgique, choisies arbitrairement, sur l’ensemble de l’année 2020. Le matériel de monitoring effectue des relevés entre 2 et 5 minutes, mais l’analyse des facteurs d’impact sur le réseau a été réalisée sur la base de moyennes journalières (ainsi que leurs tendances saisonnières et leurs valeurs annuelles). Les résultats établissent des coefficients annuels d’autosuffisance compris entre 34 et 36 %, ce qui est supposé être supérieur (d’après la littérature) à ce que permettraient des installations photovoltaïques (PV) classiques. Cependant, cette valeur reste inférieure à la limite de 37,46 % appliquée aux « prosumers » dans la tarification des installations PV en Wallonie [2]. Par ailleurs, cette étude établit des coefficients annuels d’autoconsommation compris entre 25 et 33 %en_US
dc.description.abstractenMuch needed energy transition currently brings focus on micro-combined heat and power (mCHP) systems for residential uses, especially on low-capacity fuel cells (about 1 kWel) because it has been reported that they allow for increased CO2 savings per kWel compared to engine-based mCHP’s [1]. One of those (already commercialized), is a Proton Exchange Membrane Fuel Cell (PEMFC) system hybridized with a conventional gas condensing boiler. It is fed by natural gas; it is designed to cover all the heat demands of residential houses as well as to participate locally in the electrical production. Thanks to high integration levels, it combines a PEMFC of nominal constant power of 0.75kWel and 1.1kWth, a 220L DHW (Domestic Hot Water) tank and a condensing gas boiler, mainly used for peak heat demands, that designed to provide up to 30.8kWth. The financial incentive representing a major factor in the investor’s decision towards such a technological change, focus will indeed be brought on supply and demand cover factors since they are directly linked to how much the citizens are individually billed and since they constitute actual and future unavoidable keys in the energy transition, as more and more intermittent renewable energies will be integrated to the energetic mix. This study is monitoring two of those installations in residential houses in Belgium, arbitrary chosen, for the whole year 2020. Sampling time of the monitoring hardware is between 2 and 5 minutes but it has been chosen to analyse the grid impacts factors according to average daily values (along with their seasonal trend and yearly figures). This paper has established yearly supply cover factors between 34 and 36%, which are believed to be higher (based upon literature) that what typical photovoltaics (PV) power plants would have allowed. It unfortunately remains lower than the 37.46% “prosumer” limit considered in the tariffication of Wallonia PV installations [2]. On the other hand, this paper has established yearly demand cover factors of 25 and 33%.en_US
dc.description.sponsorshipOTHen_US
dc.language.isoENen_US
dc.publisherREHVAen_US
dc.relation.isreferencedby10.1016/j.enconman.2023.117634en_US
dc.relation.isreferencedby10.1016/j.jenvman.2024.121017en_US
dc.relation.isreferencedby10.11581/dtu.00000267en_US
dc.relation.isreferencedby10.2139/ssrn.4811842en_US
dc.relation.isreferencedby10.52202/069564-0104en_US
dc.relation.isreferencedby10.25855/SFT2022-119en_US
dc.relation.isreferencedby10.52202/069564-0056en_US
dc.relation.isreferencedby10.1088/1755-1315/1185/1/012014en_US
dc.relation.isreferencedby10.21494/ISTE.OP.2024.1211en_US
dc.relation.isreferencedbyPaulus, N. (2024). The role of residential micro-cogeneration fuel cells in the energy transition - A case study in Belgium [Doctoral thesis, ULiège - Université de Liège]. ORBi-University of Liège. https://orbi.uliege.be/handle/2268/316575en_US
dc.relation.isreferencedby10.1088/2516-1083/ada109en_US
dc.rights.urihttps://proceedings.open.tudelft.nl/clima2022/article/view/176en_US
dc.subjectGrid-impact factorsen_US
dc.subjectPEMFCen_US
dc.subjectCHPen_US
dc.subjectcogenerationen_US
dc.subjectfuel cellen_US
dc.subjectsupply cover factoren_US
dc.subjectdemand cover factoren_US
dc.subject.frcoefficient d’autoconsommationen_US
dc.subject.frcoefficients d’autosuffisanceen_US
dc.subject.frPEMFCen_US
dc.subject.frcogénerationen_US
dc.subject.frpile à combustibleen_US
dc.subject.enGrid-impact factorsen_US
dc.subject.enPEMFCen_US
dc.subject.enCHPen_US
dc.subject.encogenerationen_US
dc.subject.enfuel cellen_US
dc.subject.ensupply cover factoren_US
dc.subject.endemand cover factoren_US
dc.titleGrid-impact factors of field-tested residential Proton Exchange Membrane Fuel Cell systemsen_US
dc.title.enGrid-impact factors of field-tested residential Proton Exchange Membrane Fuel Cell systemsen_US
dc.title.frCoefficients d'autoconsommation et d'autosuffisance des piles à combustible à membrane échangeuse de protons utilisées sur site en tant que systèmes de cogénération résidentiels dans des applications réellesen_US
dc.typeActe de conférence ou de colloqueen_US
synhera.classificationIngénierie, informatique & technologieen_US
synhera.institutionHE de la Province de Liègeen_US
synhera.otherinstitutionUniversité de Liègeen_US
synhera.stakeholders.fundGas.been_US
dc.description.versionOuien_US
dc.rights.holderREHVAen_US
synhera.identifier.orcidwork113477875


Fichier(s) constituant ce document

Thumbnail

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée