dc.rights.license | CC4 | en_US |
dc.contributor.author | Blondel, Vincent | |
dc.contributor.author | Ninove, Laure | |
dc.contributor.author | Van Dooren, Paul | |
dc.date.accessioned | 2021-08-24T14:30:55Z | |
dc.date.available | 2021-08-24T14:30:55Z | |
dc.date.issued | 2005 | |
dc.identifier.uri | https://luck.synhera.be/handle/123456789/1131 | |
dc.identifier.doi | https://doi.org/10.1016/j.laa.2005.02.036 | en_US |
dc.description.abstract | In this paper, we consider the conditional affine eigenvalue problem where A is an n × n nonnegative matrix, b a nonnegative vector, and ∥·∥ a monotone vector norm. Under suitable hypotheses, we prove the existence and uniqueness of the solution (λ∗, x∗) and give its expression as the Perron root and vector of a matrix , where c∗ has a maximizing property depending on the considered norm. The equation x = (Ax + b)/∥Ax + b∥ has then a unique nonnegative solution, given by the unique Perron vector of . | en_US |
dc.description.sponsorship | OTH | en_US |
dc.language.iso | EN | en_US |
dc.publisher | Elsevier Masson | en_US |
dc.relation.ispartof | Linear Algebra and its Applications | en_US |
dc.rights.uri | https://www.elsevier.com/about/policies/open-access-licenses/elsevier-user-license | en_US |
dc.subject | Matrices non négatives | en_US |
dc.subject | Valeur propre | en_US |
dc.subject | Théorème de Perron-Frobenius | en_US |
dc.subject | Rayon spectral | en_US |
dc.subject.en | Nonnegative matrices | en_US |
dc.subject.en | Eigenvalue problem | en_US |
dc.subject.en | Perron vector | en_US |
dc.subject.en | Spectral radius | en_US |
dc.title | An affine eigenvalue problem on the nonnegative orthant | en_US |
dc.type | Article scientifique | en_US |
synhera.classification | Sciences sociales & comportementales, psychologie, pédagogie>>Education & pédagogie | en_US |
synhera.institution | HE Léonard de Vinci | en_US |
synhera.otherinstitution | UCL - Université Catholique de Louvain | en_US |
dc.description.version | Oui | en_US |
dc.rights.holder | Elsevier Masson | en_US |