Afficher la notice abrégée

An affine eigenvalue problem on the nonnegative orthant

dc.rights.licenseCC4en_US
dc.contributor.authorBlondel, Vincent
dc.contributor.authorNinove, Laure
dc.contributor.authorVan Dooren, Paul
dc.date.accessioned2021-08-24T14:30:55Z
dc.date.available2021-08-24T14:30:55Z
dc.date.issued2005
dc.identifier.urihttps://luck.synhera.be/handle/123456789/1131
dc.identifier.doihttps://doi.org/10.1016/j.laa.2005.02.036en_US
dc.description.abstractIn this paper, we consider the conditional affine eigenvalue problem where A is an n × n nonnegative matrix, b a nonnegative vector, and ∥·∥ a monotone vector norm. Under suitable hypotheses, we prove the existence and uniqueness of the solution (λ∗, x∗) and give its expression as the Perron root and vector of a matrix , where c∗ has a maximizing property depending on the considered norm. The equation x = (Ax + b)/∥Ax + b∥ has then a unique nonnegative solution, given by the unique Perron vector of .en_US
dc.description.sponsorshipOTHen_US
dc.language.isoENen_US
dc.publisherElsevier Massonen_US
dc.relation.ispartofLinear Algebra and its Applicationsen_US
dc.rights.urihttps://www.elsevier.com/about/policies/open-access-licenses/elsevier-user-licenseen_US
dc.subjectMatrices non négativesen_US
dc.subjectValeur propreen_US
dc.subjectThéorème de Perron-Frobeniusen_US
dc.subjectRayon spectralen_US
dc.subject.enNonnegative matricesen_US
dc.subject.enEigenvalue problemen_US
dc.subject.enPerron vectoren_US
dc.subject.enSpectral radiusen_US
dc.titleAn affine eigenvalue problem on the nonnegative orthanten_US
dc.typeArticle scientifiqueen_US
synhera.classificationSciences sociales & comportementales, psychologie, pédagogie>>Education & pédagogieen_US
synhera.institutionHE Léonard de Vincien_US
synhera.otherinstitutionUCL - Université Catholique de Louvainen_US
dc.description.versionOuien_US
dc.rights.holderElsevier Massonen_US


Fichier(s) constituant ce document

Thumbnail

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée