Afficher la notice abrégée

Machine Learning Identifies Chronic Low Back Pain Patients from an Instrumented Trunk Bending and Return Test

dc.rights.licenseCC1en_US
dc.contributor.authorThiry, Paul
dc.contributor.authorHOURY, Martin
dc.contributor.authorPHILIPPE, Laurent
dc.contributor.authorNocent, Olivier
dc.contributor.authorBUISSERET, Fabien
dc.contributor.authorDIERICK, Frédéric
dc.contributor.authorSlama, Rim
dc.contributor.authorBertucci, William
dc.contributor.authorThévenon, André
dc.contributor.authorSimoneau, Emilie
dc.date.accessioned2022-11-17T13:41:53Z
dc.date.available2022-11-17T13:41:53Z
dc.date.issued2022-07-03
dc.identifier.urihttps://luck.synhera.be/handle/123456789/1664
dc.identifier.doidoi.org/10.3390/s22135027en_US
dc.description.abstractNowadays, the better assessment of low back pain (LBP) is an important challenge, as it is the leading musculoskeletal condition worldwide in terms of years of disability. The objective of this study was to evaluate the relevance of various machine learning (ML) algorithms and Sample Entropy (SampEn), which assesses the complexity of motion variability in identifying the condition of low back pain. Twenty chronic low-back pain (CLBP) patients and 20 healthy non-LBP participants performed 1-min repetitive bending (flexion) and return (extension) trunk movements. Analysis was performed using the time series recorded by three inertial sensors attached to the participants. It was found that SampEn was significantly lower in CLBP patients, indicating a loss of movement complexity due to LBP. Gaussian Naive Bayes ML proved to be the best of the various tested algorithms, achieving 79% accuracy in identifying CLBP patients. Angular velocity of flexion movement was the most discriminative feature in the ML analysis. This study demonstrated that: supervised ML and a complexity assessment of trunk movement variability are useful in the identification of CLBP condition, and that simple kinematic indicators are sensitive to this condition. Therefore, ML could be progressively adopted by clinicians in the assessment of CLBP patients.en_US
dc.description.sponsorshipEURen_US
dc.language.isoENen_US
dc.publisherMDPIen_US
dc.relation.ispartofSensorsen_US
dc.rights.urihttps:// creativecommons.org/licenses/by/ 4.0/en_US
dc.subjectartificial intelligenceen_US
dc.subjectmachine learningen_US
dc.subjectinertial measurement unit—IMUen_US
dc.subjectmovement complexityen_US
dc.subjectsample entropyen_US
dc.subjecttrunk flexionen_US
dc.titleMachine Learning Identifies Chronic Low Back Pain Patients from an Instrumented Trunk Bending and Return Testen_US
dc.typeArticle scientifiqueen_US
synhera.classificationSciences de la santé humaineen_US
synhera.classificationIngénierie, informatique & technologieen_US
synhera.institutionCeREF Techniqueen_US
synhera.otherinstitutionUMONSen_US
synhera.otherinstitutionUPHFen_US
synhera.otherinstitutionHenalluxen_US
synhera.otherinstitutionULilleen_US
synhera.otherinstitutionHenalluxen_US
synhera.otherinstitutionRehazenteren_US
synhera.otherinstitutionCESI Lyonen_US
synhera.stakeholders.fundInterreg FWVl NOMADeen_US
synhera.cost.total2400en_US
synhera.cost.apc2400en_US
synhera.cost.comp0en_US
synhera.cost.acccomp0en_US
dc.description.versionOuien_US
dc.rights.holder0en_US


Fichier(s) constituant ce document

Thumbnail

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

CC1
Excepté là où spécifié autrement, la license de ce document est décrite en tant que CC1