ZN-balls: Solitons from ZN-symmetric scalar field theory
dc.rights.license | CC1 | en_US |
dc.contributor.author | BUISSERET, Fabien | |
dc.contributor.author | Brihaye, Yves | |
dc.date.accessioned | 2022-12-21T15:49:56Z | |
dc.date.available | 2022-12-21T15:49:56Z | |
dc.date.issued | 2022-11-28 | |
dc.identifier.uri | https://luck.synhera.be/handle/123456789/1721 | |
dc.identifier.doi | 10.1103/PhysRevD.106.105024 | en_US |
dc.description.abstract | We discuss the conditions under which static, finite-energy, configurations of a complex scalar field ϕ with constant phase and spherically-symmetric norm exist in a potential of the form V(ϕ*ϕ, ϕ^N, ϕ^*N) with N ∈ N and N ≥ 2, i.e., a potential with a ZN-symmetry. Such configurations are called ZN-balls. We build explicit solutions in (3 + 1)-dimensions from a model mimicking effective field theories based on the Polyakov loop in finite-temperature SU(N) Yang-Mills theory. We find ZN-balls for N = 3, 4, 6, 8, 10, and show that only static solutions with zero radial nodes exist for N odd, while solutions with radial nodes may exist for N even. | en_US |
dc.description.sponsorship | None | en_US |
dc.language.iso | EN | en_US |
dc.publisher | APS | en_US |
dc.relation.ispartof | Phys Rev D | en_US |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | en_US |
dc.subject | Soliton | en_US |
dc.subject | Discrete symmetry | en_US |
dc.subject | Scalar field | en_US |
dc.title | ZN-balls: Solitons from ZN-symmetric scalar field theory | en_US |
dc.type | Article scientifique | en_US |
synhera.classification | Physique, chimie, mathématiques & sciences de la terre | en_US |
synhera.institution | CeREF Technique | en_US |
synhera.otherinstitution | UMONS | en_US |
synhera.cost.total | 0 | en_US |
synhera.cost.apc | 0 | en_US |
synhera.cost.comp | 0 | en_US |
synhera.cost.acccomp | 0 | en_US |
dc.description.version | Oui | en_US |
dc.rights.holder | 0 | en_US |