Afficher la notice abrégée

Fractal analyses reveal independent complexity and predictability of gait

dc.rights.licenseCC1en_US
dc.contributor.authorDIERICK, Frédéric
dc.contributor.authorNivard, Anne-Laure
dc.contributor.authorWhite, Olivier
dc.contributor.authorBUISSERET, Fabien
dc.date.accessioned2020-06-02T11:34:19Z
dc.date.available2020-06-02T11:34:19Z
dc.date.issued2017-11-28
dc.identifier.urihttps://luck.synhera.be/handle/123456789/269
dc.identifier.doi10.1371/journal. pone.0188711en_US
dc.description.abstractLocomotion is a natural task that has been assessed for decades and used as a proxy to highlight impairments of various origins. So far, most studies adopted classical linear analy- ses of spatio-temporal gait parameters. Here, we use more advanced, yet not less practical, non-linear techniques to analyse gait time series of healthy subjects. We aimed at finding more sensitive indexes related to spatio-temporal gait parameters than those previously used, with the hope to better identify abnormal locomotion. We analysed large-scale stride interval time series and mean step width in 34 participants while altering walking direction (forward vs. backward walking) and with or without galvanic vestibular stimulation. The Hurst exponent α and the Minkowski fractal dimension D were computed and interpreted as indexes expressing predictability and complexity of stride interval time series, respectively. These holistic indexes can easily be interpreted in the framework of optimal movement com- plexity. We show that α and D accurately capture stride interval changes in function of the experimental condition. Walking forward exhibited maximal complexity (D) and hence, adaptability. In contrast, walking backward and/or stimulation of the vestibular system decreased D. Furthermore, walking backward increased predictability (α) through a more stereotyped pattern of the stride interval and galvanic vestibular stimulation reduced predict- ability. The present study demonstrates the complementary power of the Hurst exponent and the fractal dimension to improve walking classification. Our developments may have immediate applications in rehabilitation, diagnosis, and classification procedures.en_US
dc.description.sponsorshipNoneen_US
dc.language.isoENen_US
dc.publisherPLOS ONEen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.subjectWalking, Fractal analysis, Backward walking, GVSen_US
dc.titleFractal analyses reveal independent complexity and predictability of gaiten_US
dc.typeLivre/Ouvrage ou monographieen_US
synhera.classificationSciences de la santé humaineen_US
synhera.institutionHE Louvain en Hainauten_US
synhera.otherinstitutionUCLen_US
synhera.otherinstitutionUMONSen_US
synhera.otherinstitutionUniversité de Bourgogneen_US
synhera.otherinstitutionUniversity of East Angliaen_US
dc.description.versionOuien_US
dc.rights.holderPLOS ONEen_US


Fichier(s) constituant ce document

Thumbnail

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

CC1
Excepté là où spécifié autrement, la license de ce document est décrite en tant que CC1