- Accueil de LUCK
- HE Louvain en Hainaut
- CEREF
- Sciences Et Techniques
- Voir le document
Higher-derivative harmonic oscillators: stability of classical dynamics and adiabatic invariants
Résumé
he status of classical stability in higher-deriv- ative systems is still subject to discussions. In this note, we argue that, contrary to general belief, many higher-derivative systems are classically stable. The main tool to see this prop- erty are Nekhoroshev’s estimates relying on the action-angle formulation of classical mechanics. The latter formulation can be reached provided the Hamiltonian is separable, which is the case for higher-derivative harmonic oscillators. The Pais–Uhlenbeck oscillators appear to be the only type of higher-derivative harmonic oscillator with stable classical dynamics. A wide class of interaction potentials can even be added that preserve classical stability. Adiabatic invariants are built in the case of a Pais–Uhlenbeck oscillator slowly changing in time; it is shown indeed that the dynamical sta- bility is not jeopardised by the time-dependent perturbation