• Open Access
    • Comment cela fonctionne?
    • Ouvrir une session
    • Contact

    Voir le document

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Voir le document 
    • Accueil de LUCK
    • HE Louvain en Hainaut
    • HELHa - HE
    • Santé
    • Voir le document
    • Accueil de LUCK
    • HE Louvain en Hainaut
    • HELHa - HE
    • Santé
    • Voir le document
    Voir/Ouvrir
    [1408.0958] The SUSY Yang-Mills plasma in a $T$-matrix approach.pdf (114.8Ko)
    Date
    2015-08-12
    Auteur
    Lacroix, Gwendolyn
    BUISSERET, Fabien
    Semay, Claude
    Metadata
    Afficher la notice complète
    Partage ça

    The SUSY Yang Mills plasma in a T-matrix approach

    Résumé
    In this paper, the thermodynamic properties of N = 1 supersymmetric Yang–Mills theory with an arbitrary gauge group are investigated. In the confined range, we show that identifying the bound state spectrum with a Hagedorn one coming from noncritical closed superstring theory leads to a prediction for the value of the deconfining temperature Tc that agrees with recent lattice data. The deconfined phase is studied by resorting to a T-matrix formulation of statistical mechanics in which the medium under study is seen as a gas of quasigluons and quasigluinos interacting nonperturbatively. Emphasis is put on the temperature range (1–5) Tc, where the interactions are expected to be strong enough to generate bound states. Binary bound states of gluons and gluinos are indeed found to be bound up to 1.4 Tc for any gauge group. The equation of state is then computed numerically for SU(N) and G2, and discussed in the case of an arbitrary gauge group. It is found to be nearly independent of the gauge group and very close to that of nonsupersymmetric Yang–Mills when normalized to the Stefan–Boltzmann pressure and expressed as a function of T/Tc.

    Parcourir

    Tout LUCKCommunautés & CollectionsAuteurTitreDate de publicationSujetType de documentTitre de périodiqueThématiqueCette collectionAuteurTitreDate de publicationSujetType de documentTitre de périodiqueThématique

    Mon compte

    Ouvrir une sessionS'inscrire

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Plan du site

    • Open Access
    • Comment cela fonctionne?
    • Mon compte

    Contact

    • L’équipe de LUCK
    • Synhera
    • CIC