Afficher la notice abrégée

On the use of the artificial neural network to determine heating parameters for active thermography in composites, a feasibility study

dc.rights.licenseOTHen_US
dc.contributor.authorAirson, Aymeric
dc.contributor.authorDEMARBAIX, Anthonin
dc.contributor.authorNotebaert, Arnaud
dc.contributor.authorBarros, C.
dc.contributor.authorGomes, G.F.
dc.contributor.authorCunha Jr., S.S.
dc.date.accessioned2025-05-27T07:38:03Z
dc.date.available2025-05-27T07:38:03Z
dc.date.issued2025-04-30
dc.identifier.issn1539-7734en_US
dc.identifier.urihttps://luck.synhera.be/handle/123456789/3054
dc.identifier.doihttps://doi.org/10.1080/15397734.2025.2489060en_US
dc.description.abstractAbstract : "This study aims to design an Artificial Neural Network (ANN) able to provide its user, in a numerical and experimental context, with a combination of heating parameters in an active thermography process. This combination allowing the user to reliably detect a known in size and depth delamination, which is one of the most important sources of damages in composite structures. This work features the realization of a thermographic database using a numerical model under the finite element software COMSOLVR. The ANN itself was developed using a parametric asset and then parametrized in the frame of this study. In order to train and validate the ANN some chosen heating parameters were used: the angle of the lamps in heat process, the distance between the test structure and the lamps, the power of the filament inside each lamp and the time for which the lamps will be turned on (heating time). The results highlight the feasibility of a combination of an ANN with thermographic finite element simulation to boost the accuracy of a thermogram. Moreover, it also points at the best ways to realize this tool, opening the field for further research."en_US
dc.description.sponsorshipEURen_US
dc.language.isoENen_US
dc.publisherTaylor & Francis Groupen_US
dc.relation.ispartofMechanics based design of structures and machinesen_US
dc.rights.urihttps://www.tandfonline.com/terms-and-conditions#link2en_US
dc.subjectthermographyen_US
dc.subjectartificial neural networksen_US
dc.subjectcomposites structuresen_US
dc.titleOn the use of the artificial neural network to determine heating parameters for active thermography in composites, a feasibility studyen_US
dc.typeArticle scientifiqueen_US
synhera.classificationIngénierie, informatique & technologie>>Ingénierie mécaniqueen_US
synhera.classificationIngénierie, informatique & technologie>>Ingénierie électrique & électroniqueen_US
synhera.institutionHE Condorceten_US
synhera.otherinstitutionGEMEC Group, Federal University of Itajuba, Brazilen_US
synhera.stakeholders.fundERASMUS+en_US
synhera.cost.total0en_US
synhera.cost.apc0en_US
synhera.cost.comp0en_US
synhera.cost.acccomp0en_US
dc.description.versionOuien_US
dc.rights.holderTaylor & Francis Groupen_US


Fichier(s) constituant ce document

Thumbnail

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée