Afficher la notice abrégée

Framework for determining and simulating tensile properties of smart composite FDM printed parts

dc.rights.licenseCC1en_US
dc.contributor.authorHomrani, Mohamed Khalil
dc.contributor.authorDEMARBAIX, Anthonin
dc.contributor.authorOchana, Imi
dc.contributor.authorDucobu, François
dc.date.accessioned2026-01-19T10:11:14Z
dc.date.available2026-01-19T10:11:14Z
dc.date.issued2025-05-07
dc.identifier.issn2474-395Xen_US
dc.identifier.urihttps://luck.synhera.be/handle/123456789/3089
dc.identifier.doihttps://doi.org/10.21741/9781644903599-30en_US
dc.description.abstractAbstract : "Fused deposition modeling (FDM) is an additive manufacturing technique with good precision and moderate tolerances. Utilizing Finite Element Analysis (FEA) in literature is now key to studying the properties of these printed parts. The nature of the FDM process results in anisotropic inner structures with microscopic voids that are heavily affected by printing parameters. Even more so than the latter, composite coextrusion FDM printed parts possesses anisotropy due to the joining of the two filaments in the melt phase. These effects need to be examined and incorporated in an adequate digital twin. There exists a valid alternative to simulating this complex anisotropy, with the creation of Equivalent Homogenized Material. This study aims to bridge the gap between experimental data and FEA models for smart composite FDM parts. The goal is to establish a framework for determining effective homogenous mechanical properties of said parts. The Rule of Mixtures (ROM) method is first examined, and the limitations quickly become apparent, as the method fails to distinguish between two study cases with similar volume fractions but different fiber/matrix layouts. The second method, Representative Volume Elements (RVE), does not possess such a disadvantage. With an adequate convergence study on RVE size and fiber distribution, the calculated equivalent material’s properties show good agreement with experimental results, at a greatly increased computation cost."en_US
dc.description.sponsorshipCOMen_US
dc.format.mediumOTHen_US
dc.language.isoENen_US
dc.publisherMaterials Research Forumen_US
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/deed.fren_US
dc.subjectFinite Elementen_US
dc.subjectTensile testingen_US
dc.subjectEquivalent materialsen_US
dc.subject3D printingen_US
dc.titleFramework for determining and simulating tensile properties of smart composite FDM printed partsen_US
dc.typeActe de conférence ou de colloqueen_US
synhera.classificationIngénierie, informatique & technologie>>Ingénierie électrique & électroniqueen_US
synhera.classificationIngénierie, informatique & technologie>>Multidisciplinaire, généralités & autresen_US
synhera.institutionHE Condorceten_US
synhera.otherinstitutionMachine Design and Production Engineering Lab, Research Institute for Science and Material Engineering, University of Mons, Mons, Belgiumen_US
dc.description.versionOuien_US
dc.rights.holderHomrani et al.en_US


Fichier(s) constituant ce document

Thumbnail

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

CC1
Excepté là où spécifié autrement, la license de ce document est décrite en tant que CC1