Afficher la notice abrégée

Characterization of Defects by Non-Destructive Impulse Excitation Technique for 3D Printing FDM Polyamide Materials in Bending Mode

dc.rights.licenseCC1en_US
dc.contributor.authorJabri, Fatima-Ezzahrae
dc.contributor.authorOchana, Imi
dc.contributor.authorDucobu, François
dc.contributor.authorEl Alaiji, Ra
dc.contributor.authorDEMARBAIX, Anthonin
dc.date.accessioned2026-01-19T10:59:38Z
dc.date.available2026-01-19T10:59:38Z
dc.date.issued2025-07-25
dc.identifier.issn2076-3417en_US
dc.identifier.urihttps://luck.synhera.be/handle/123456789/3090
dc.identifier.doihttps://doi.org/10.3390/app15158266en_US
dc.description.abstractAbstract : "The presented article analyzes the impact of internal defects on the modal responses of polyamide parts subjected to bending. Samples with defects of various sizes (0, 3, 5, 7, and 10 mm) located at the neutral bending line were tested. Modal properties were measured via an acoustic and a vibration sensor, using impulse excitation and fast Fourier transform (FFT) analysis. Modal properties include peak frequency, damping and amplitude. Non-defective samples show lower peak frequency and stronger amplitude for both detectors. Moreover, defects larger than 3 mm have minimal impact on peak frequency. The vibration detector is more sensitive to delamination presented at 7 and 10 mm defects. In addition, elevated peak frequency at 3 mm is the result of local hardening at the defect edge. Moreover, a neutral line position reduces damping when the defect size approaches 5 mm. Conversely, acoustic detectors ignore delamination and reveal lower damping and amplitude at 7 and 10 mm defects. Furthermore, internal sound diffusion from 3 and 5 mm defects enhances air losses and damping. Acoustic detectors only evaluate fault size and position, whereas vibrational detectors may detect local reinforcement and delamination more easily. These results highlight the importance of choosing the right detector according to the location, size, and specific modal characteristics of defects."en_US
dc.description.sponsorshipCOMen_US
dc.language.isoENen_US
dc.publisherMDPIen_US
dc.relation.ispartofApplied Sciencesen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.subjectfused deposition modelingen_US
dc.subjectpolyamideen_US
dc.subjectinternal defecten_US
dc.subjectimpulse excitation technique and Fast Fourier Transform (FFT)en_US
dc.titleCharacterization of Defects by Non-Destructive Impulse Excitation Technique for 3D Printing FDM Polyamide Materials in Bending Modeen_US
dc.typeArticle scientifiqueen_US
synhera.classificationIngénierie, informatique & technologie>>Ingénierie électrique & électroniqueen_US
synhera.classificationIngénierie, informatique & technologie>>Multidisciplinaire, généralités & autresen_US
synhera.institutionHE Condorceten_US
synhera.otherinstitutionLaboratory of Innovative Technologies (LTI), National School of Applied Sciences, Tangier, Moroccoen_US
synhera.otherinstitutionMachine Design and Production Engineering Laboratory, Research Institute for Science and Material Engineering, University of Mons, Mons, Belgiumen_US
synhera.cost.total2400 CHF ==> +/- 2584 EURen_US
synhera.cost.apc+/- 2584 EURen_US
synhera.cost.comp/en_US
synhera.cost.acccomp/en_US
dc.description.versionOuien_US
dc.rights.holderJabri et al.en_US


Fichier(s) constituant ce document

Thumbnail

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

CC1
Excepté là où spécifié autrement, la license de ce document est décrite en tant que CC1