- Accueil de LUCK
- HE Bruxelles-Brabant
- HE2B - HE
- Santé
- Voir le document
Date
2013-06-08Auteur
Sponciello, Nicholas
Rozloznik, Miroslav
Guerrero, François
Cialoni, Danilo
Metadata
Afficher la notice complètePartage ça
Oxidative stress in breath-hold divers after repetitive dives
Résumé
Introduction: Hyperoxia causes oxidative stress. Breath-hold diving is associated with transient hyperoxia followed by hypoxia and a build-up of carbon dioxide (CO₂), chest-wall compression and significant haemodynamic changes. This study analyses variations in plasma oxidative stress markers after a series of repetitive breath-hold dives.
Methods: Thirteen breath-hold divers were asked to perform repetitive breath-hold dives to 20 metres' depth to a cumulative breath-hold time of approximately 20 minutes over an hour in the open sea. Plasma nitric oxide (NO), peroxinitrites (ONOO⁻) and thiols (R-SH) were measured before and after the dive sequence.
Results: Circulating NO significantly increased after successive breath-hold dives (169.1 ± 58.26% of pre-dive values; P = 0.0002). Peroxinitrites doubled after the dives (207.2 ± 78.31% of pre-dive values; P = 0.0012). Thiols were significantly reduced (69.88 ± 19.23% of pre-dive values; P = 0.0002).
Conclusion: NO may be produced by physical effort during breath-hold diving. Physical exercise, the transient hyperoxia followed by hypoxia and CO₂ accumulation would all contribute to the increased levels of superoxide anions (O₂²⁻). Since interaction of O₂²⁻ with NO forms ONOO⁻, this reaction is favoured and the production of thiol groups is reduced. Oxidative stress is, thus, present in breath-hold diving.