• Open Access
    • Comment cela fonctionne?
    • Ouvrir une session
    • Contact

    Voir le document

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Voir le document 
    • Accueil de LUCK
    • HE Condorcet
    • HE Condorcet - HE
    • Sciences Et Techniques
    • Voir le document
    • Accueil de LUCK
    • HE Condorcet
    • HE Condorcet - HE
    • Sciences Et Techniques
    • Voir le document
    Voir/Ouvrir
    2024-Haelterman_et_al.pdf (12.98Mo)
    Date
    2024-05-01
    Auteur
    Haelterman, Loïc
    LOUVIEAUX, Julien
    Chiodi, Claudia
    Bouchet, Anne-Sophie
    Kupcsik, Laszlo
    Stahl, Andreas
    Rousseau-Gueutin, Mathieu
    Snowdon, Rod
    Laperche, Anne
    Nesi, Nathalie
    Hermans, Christian
    Metadata
    Afficher la notice complète
    Partage ça

    Genetic control of root morphology in response to nitrogen across rapeseed diversity

    Résumé
    Abstract : "Rapeseed (Brassica napus L.) is an oil-containing crop of great economic value but with considerable nitrogen requirement. Breeding root systems that efficiently absorb nitrogen from the soil could be a driver to ensure genetic gains for more sustainable rapeseed production. The aim of this study is to identify genomic regions that regulate root morphology in response to nitrate availability. The natural variability offered by 300 inbred lines was screened at two experimental locations. Seedlings grew hydroponically with low or elevated nitrate levels. Fifteen traits related to biomass production and root morphology were measured. On average across the panel, a low nitrate level increased the root-to-shoot biomass ratio and the lateral root length. A large phenotypic variation was observed, along with important heritability values and genotypic effects, but low genotype-by-nitrogen interactions. Genome-wide association study and bulk segregant analysis were used to identify loci regulating phenotypic traits. The first approach nominated 319 SNPs that were combined into 80 QTLs. Three QTLs identified on the A07 and C07 chromosomes were stable across nitrate levels and/or experimental locations. The second approach involved genotyping two groups of individuals from an experimental F2 population created by crossing two accessions with contrasting lateral root lengths. These individuals were found in the tails of the phenotypic distribution. Co-localized QTLs found in both mapping approaches covered a chromosomal region on the A06 chromosome. The QTL regions contained some genes putatively involved in root organogenesis and represent selection targets for redesigning the root morphology of rapeseed."

    Parcourir

    Tout LUCKCommunautés & CollectionsAuteurTitreDate de publicationSujetType de documentTitre de périodiqueThématiqueCette collectionAuteurTitreDate de publicationSujetType de documentTitre de périodiqueThématique

    Mon compte

    Ouvrir une sessionS'inscrire

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Plan du site

    • Open Access
    • Comment cela fonctionne?
    • Mon compte

    Contact

    • L’équipe de LUCK
    • Synhera
    • CIC